Процесс деформирования материалов Колебания системы с одной степенью свободы Геометрические уравнения и уравнения неразрывности

Сопромат Теории прочности Основы теории упругости и пластичности

3-я теория прочности – теория наибольших касательных напряжений: предельное состояние наступает, если, τmax превышает допускаемую величину

Геометрические уравнения и уравнения неразрывности

  Происходящие при нагружении тела перемещения его точек можно задать при помощи совокупности трех функций (см. п.1.5): u(x,y,z), v(x,y,z) и w(x,y,z), определяющих перемещения вдоль координатных осей x, y и z, соответственно. Достаточно просто можно показать, что деформации (линейные и угловые) выражаются через функции перемещений, (в случае малых перемещений, которые рассматриваются в сопротивлении материалов):

 (10.16)

где ei-линейная деформация вдоль i-той оси координат, gij-угловая деформация в плоскости i0j(i,j=x, y, z) (см.рис.10.1).

  Правило знаков принимается следующее: для линейных деформаций-растяжению соответствует положительная деформация; для угловых деформаций положительное ее значение соответствует уменьшению прямого угла между положительными направлениями осей. По аналогии с напряженным состоянием, здесь также имеются главные деформации и главные площадки деформирования, которые являются инвариантами, независящими от осей координат.

  Принятая в механике деформируемого тела гипотеза о сплошности среды, выражающаяся, в частности, в том, что в одну и ту же точку пространства не могут придти две материальные точки, равно, как и не допускается разрывов среды, находит свое воплощение в уравнениях неразрывности деформаций. Как видно из (10.16), шесть компонентов деформаций выражаются через три функции перемещений-следовательно между ними существует определенная связь в виде:

;

;

; (10.17)

;

;

.

 Убедиться в верности (10.17) можно просто-достаточно подставить в них выражения (10.16). В случае плоской задачи, за исключением первого уравнения системы (10.17), остальные уравнения превращаются в тождество.

  В заключение заметим, что в каждой точке среды деформируемого тела всегда существуют три взаимно перпендикулярные плоскости, которые не испытывают сдвигов. Координатные оси, которые образуют эти плоскости, называются главными осями деформируемого состояния.

 Линейные деформации по главным осям называются главными деформациями и нормируются в порядке e1>e2>e3 с учетом их знака, причем знак “плюс” относится к тем деформациям, которые вызваны в результате растяжения, и наоборот, знак “минус” относится к деформациям сжатия.

 Заметим, что для изотропного тела, свойства которого не зависят от направлений координатных осей, главные оси напряжений и деформаций совпадают.

Физические уравнения теории упругости дляизотропного тела. Обобщенный закон Гука.

Возможные способы решения задач теории упругости В общем случае искомыми величинами в задачах теории упругости являются функции перемещений, компоненты напряженного и деформированного состояний среды.

Теория предельных напряженных состояний При действии внешних сил материал конструкции может находиться в различных механических состояниях.

Плоская задача в декартовых координатах На практике различают два вида плоской задачи-плоскую деформацию и обобщенное плоское напряженное состояние.

Вычисление величин главных напряжений. Для решения приведенного уравнения применим формулу Кардано:

,

Проверка правильности вычисления главных напряжений: так как I1, I2 и I3-инварианты, значит их значения постоянны.

Дана прямоугольная невесомая пластина (рис.10.6), по кромкам которой действуют внешние силы, равномерно распределенные по ее толщине, равной единице/

Выяснить характер распределенных по кромкам пластины внешних сил, под действием которых имеет место данная система напряжений, и построить эпюры напряжений.

По полученным эпюрам напряжений, принимая их за эпюры распределенной внешней нагрузки, произвести проверку равновесия пластины. Выполним проверку равновесия пластины. Для этой цели найдем равнодействующие внешних сил, действующих по кромкам пластины (рис.10.8):

Основы теории пластичности При испытании образцов обнаруживаются следующие основные особенности характера деформирования материалов при их нагружении.

После решения уравнения равновесия статическая неопределимость раскрыта. Канонические уравнения метода сил. В методе сил уравнения совместности перемещений, которые представляют собой условие равенства нулю перемещений точки под искомой реакцией опор, записывается в каноническом виде.
Геометрические уравнения и уравнения неразрывности сопромат