Основные дифференциальные соотношения теории изгиба Определение внутренних силовых факторов в сечениях рам Внецентренное растяжение и сжатие Расчет стастически неопределимых систем методом сил

Сопромат Теории прочности Основы теории упругости и пластичности

Теорема Кастильяна: Перемещение точки под силой в ее направлении, равно частной производной от потенциальной энергии деформации системы по этой силе. Метод Кастильяна используют для определения перемещений в оболочках, пластинах, массивах.

Стержневые системы. Степень статической неопределимости

  Под стержневой системой понимается всякая конструкция, состоящая из элементов, имеющих форму бруса. Если элементы конструкции работают только на растяжение или сжатие система называется фермой (рис.6.1). Ферма состоит из шарнирно опертых между собой прямых стержней, образующих треугольники и для нее характерно приложение внешних сил в узлах заданной системы.

 Если элементы стержней системы работают в основном на изгиб или кручение, то такая система называется рамой (рис.6.2).

 Если все элементы стержневой системы расположены в одной плоскости, в которой также действуют все внешние силы, включая реакции опор, то система называется плоской (рис.6.1, 6.2).

 Если все элементы заданной системы расположены в одной плоскости, а внешние силы действуют в перпендикулярной плоскости, то система называется плоскопространственной (рис.6.3). Стержневые системы, не относящиеся к двум указанным категориям, называются пространственными (рис.6.4).

 Все стержневые системы принято разделять на статически определимые и статически неопределимые. Под статически определимой понимается такая система, для которой усилия во всех ее элементах могут быть определены по методу сечений с применением лишь уравнений равновесия. Если этого сделать нельзя, то такая система называется статически неопределимой.

 Разность между числом неизвестных усилий (реакций опор и внутренних силовых факторов) и числом независимых уравнений равновесий, которые могут быть составлены для рассматриваемой системы, называется степенью статической неопределимости системы.

 Связи, наложенные на систему, бывают внешними и внутренними. Под внешними понимают ограничения, накладываемые на абсолютные перемещения точек системы, как единое целое. Внутренние же связи ограничивают взаимные (относительные) перемещения элементов системы. Следовательно, статическая неопределимость системы может быть вызвана как внешними, так и внутренними связями.

 Если рассматривать внешние связи, то можно отметить, что положение жесткого тела на плоскости x,y характеризуется тремя независимыми параметрами -координатами x, y и углом поворота рассматриваемой плоскости. Таким образом, необходимое для равновесия число наложенных внешних связей должно быть равно трем (по количеству уравнений равновесия-åx=0, åy=0, åm=0). Если плоская система состоит из D частей, каждую из которых можно рассматривать как жесткое тело, то количество параметров, определяющих положение этой системы будет равно 3D. Каждый шарнир, соединяющий две части системы, разрешает лишь их взаимный поворот, устраняя возможность их взаимных смещений-следовательно он уменьшает количество возможных перемещений системы на две единицы. Кроме этого, каждый опорный стержень устраняет возможность перемещения системы в соответствующем направлении. Таким образом, подсчитать степень статической неопределимости системы, определяемую внешними связями, можно по следующей формуле:

W=3D-2Ш-С,

где D-число частей (“дисков”) системы, каждая из которых может рассматриваться как абсолютно жесткое тело, Ш-количество шарниров в системе, соединяющих “диски”, С-число опорных стержней. Для статически определимых систем W =0. При W<0 система является статически неопределимой.

 Наиболее характерные типы внешних связей и их схематичные изображения рассмотрены в п.5.1.

На рис.6.5 показана плоская рама, имеющая в первом (а) случае три внешние связи, а во втором случае (б)-пять. Значит, в первом случае рама имеет необходимое для статической определимости количество внешних связей, а во втором же-две дополнительные внешние связи. Однако в обеих ситуациях рама статически неопределима, т.к. конфигурация ее такова, что не позволяет определить усилия во всех ее элементах, используя только уравнения равновесия. Следовательно, для окончательного ответа на вопрос о статической определимости системы необходимо проведение совместного анализа наложенных на систему внешних и внутренних связей (более подробно этот вопрос рассматривается в курсе строительной механики).

Рис.6.5

 Методы расчета статически неопределимых систем основаны на определении перемещений в ее точках. Выше мы рассматривали метод начальных параметров для вычисления перемещений в балках. При всех достоинствах этого метода он обладает одним существенным недостатком-при большом количестве участков вычислительные формулы становятся весьма громоздкими. Особенно это существенно в случае криволинейной оси стержневой системы.

 В связи с этим, рассмотрим более универсальный метод определения перемещений-метод Мора, названный так по имени немецкого ученого, предложившего его.

Определение перемещений методом Мора Суть метод Мора в следующем.

Если принять EI=const, то перемещение в некоторой точке стержня определяется как интеграл от произведения двух функций моментов-Мx и . В общем виде интеграл Мора можно выразить следующей формулой: .(6.4).

Метод сил Суть этого метода заключается в том, что заданная статически неопределимая система освобождается от дополнительных связей как внешних, так и внутренних, а их действие заменяется соответствующими силами и моментами.

Определить степень статической неопределимости системы и составить уравнение совместности деформаций.

При вычислении D1P было учтено, что эпюры М1 и МP имеют разный знак, т.к. вызывают растяжение разных волокон-об этом говорит отрицательный знак при D1P.

Устойчивость прямых стержней Понятие об устойчивости. Задача Эйлера.

Рассмотрим условия, при которых происходит переход от центрально сжатого состояния к изогнутому, т.е. становится возможной криволинейная форма оси стержня при центрально приложенной сжимающей силе Р.

Границы применимости решения Эйлера. Формула Ясинского.

При гибкостях стержня, находящихся в диапазоне 0< l<40¸50, стержень настолько “короток”, что его разрушение происходит по схеме сжатия, следовательно, критические напряжения можно приравнять в этом случае к пределу пропорциональности.

Несмотря на простоту выражения (7.19) расчет сжатых стержней производится, как правило, в несколько этапов. Это связано с тем, что величина j зависит от формы и размеров сечения, поэтому не может быть назначена заранее.

Подбор сечения стойки из двух швеллеров. При рассмотрении этого вопроса составное сечение стойки следует рассматривать как цельное, и поэтому расчет приведенной гибкости можно не выполнять.

Момент инерции поперечного сечения стойки из двух швеллеров относительно оси x:  Момент инерции составного сечения относительно оси y можно изменять, сближая или удаляя швеллеры один относительно другого.

Потенциальная энергия деформации. Гипотезы прочности. При деформации тела (пространственное) не только происходит изменение его объема, но и изменение формы (кубик → параллелепипед). U=UV+UФ, где UV – удельная потенциальная энергия изменения объема, UФ – удельная потенциальная энергия формообразования (формоизменения).
Экспертные Внецентренное растяжение и сжатие сопромат