Основные дифференциальные соотношения теории изгиба Определение внутренних силовых факторов в сечениях рам Внецентренное растяжение и сжатие Расчет стастически неопределимых систем методом сил

Сопромат Теории прочности Основы теории упругости и пластичности

Гипотезы прочности: Цель теории прочности – сравнить напряженное состояние пространственное, плоское с допускаемыми напряжениями, которые получены экспериментальным путем для одноосного напряженного состояния. Два напряженных состояния (например: трехосное и одноосное) равноопасны, если при увеличении главных напряжений в одно и тоже число раз эти напряженные состояния одновременно становятся предельными. Предельное состояние – состояние потери работоспособности. Для хрупких σв → разрушение, для пластичных материалов σт → потеря упругих свойств.

Границы применимости решения Эйлера.
Формула Ясинского

  Как показали опыты, решение Эйлера подтверждалось не во всех случаях. Причина состоит в том, что формула Эйлера была получена в предположении, что при любой нагрузке стержень работает в пределах упругих деформаций по закону Гука. Следовательно, его нельзя применять в тех ситуациях, когда напряжения превосходят предел пропорциональности. В связи с этим найдем границы применимости решения Эйлера:

Рис.7.4

, (7.13)

где -радиус инерции сечения. Если стержень имеет одинаковые опорные закрепления в двух взаимно перпендикулярных плоскостях инерции, то при определении значения критической силы и критического напряжения, необходимо брать наименьшее значение момента инерции и, соответственно, радиуса инерции поперечного сечения.

 Введем понятие гибкости стержня:

.

 Тогда (7.13) принимает вид:

. (7.14)

 Из (7.14) следует, что напряжение sКР возрастает по мере уменьшения гибкости стержня. Заметим, что стержень, имеющий неодинаковые опорные закрепления в главных плоскостях и, следовательно, неодинаковые приведенные длины, теряет устойчивость в той главной плоскости, в которой гибкость стержня имеет наибольшее значение.

 Формула Эйлера неприемлема, если напряжения sКР>sП, где sП-предел пропорциональности. Приравнивая (7.14) к пределу пропорциональности, получим предельное значение гибкости:

. (7.15)

Если l>lПРЕД, то формулу Эйлера можно применять. В противном случае ею пользоваться нельзя. Для стали Ст.3 lПРЕД=100.

  В ситуациях, когда напряжения превышают предел пропорциональности, получение теоретического решения осложняется, т.к. зависимость между напряжениями и деформациями становится нелинейной. В связи с этим, в этих случаях пользуются эмпирическими зависимостями. В частности, Ф.С.Ясинский предложил следующую формулу для критических по устойчивости напряжений:

, (7.16)

где a, b-постоянные, зависящие от материала, так для стали Ст.3 a=3,1105 кН/м2 , b=11,4102 кН/м2.

Напряжение при напряженном состоянии равно опасное данному трехосному напряженному состоянию называют эквивалентным (σэкв). При формулировании теории прочности выбирают один или несколько факторов, приводящих к потере работоспособности элемента конструкции (величина напряжений σ, τ, величина деформаций ε, удельная потенциальная энергия, накопленная в теле) разрабатывается теорией, в которых учитывается скорость нагружения, температура, напряженное состояние, давление и т.д.
Экспертные Внецентренное растяжение и сжатие сопромат