Типовой расчет по ТОЭ Полупроводниковые приборы Операционный усилитель Метод активных и реактивных составляющих токов Метод узловых и контурных уравнений Расчет методом узловых потенциалов

Теория электрических цепей (основы электротехники)

Элементы электрических цепей

Электротехника - область науки и техники, использующей электрическое и магнитное явления для практических целей. История развития этой науки занимает два столетия. Она началась после изобретения первого электрохимического источника электрической энергии в 1799 г. Именно тогда началось изучение свойств электрического тока, были установлены основные законы электрических цепей, электрические и магнитные явления стали использоваться для практических целей, были разработаны первые конструкции электрических машин и приборов. Жизнь современного человека без использования электрической энергии немыслима.

 Большой вклад в развитие электротехники внесли русские ученые. Так еще в 1802 г. Выдающийся русский ученый В.В. Петров впервые указал на возможность использования электрической дуги для освещения. Было разработано большое число конструкций дуговых ламп освещения. Но наиболее экономичной оказалась электрическая свеча П.Н. Яблочкова (1876г). В предложенной Яблочковым конструкции был впервые применен для практических целей трансформатор. Но главная заслуга изображения в том, что оно повысило спрос на генераторы переменного тока.

 Все возрастающая потребность в использовании электрической энергии привело к проблеме ее централизованного производства, передачи на дальние расстояния, распределения и экономичного использования. Решение проблемы привело к разработке и созданию трехфазных электрических цепей. Огромная заслуга в создании элементов таких цепей принадлежит выдающемуся русскому ученому М.О. Доливо-Добровольскому. Он создал трехфазный асинхронный двигатель, трансформатор, разработал четырехпроводную и трехпроводную цепи (1891г.).

 Сегодня электрическая энергия используется в технике связи, автоматике, измерительной технике, навигации. Она применяется для выполнения механической работы, нагрева, освещения, используется в технологических процессах (электролиз), в медицине, биологии, астрономии, геологии и др. Столь обширное проникновение электротехники в жизнь человека привело к необходимости включить ее в состав общетехнических дисциплин при подготовке специалистов всех технических специальностей. При этом перед студентами стоят две главные задачи. Первая задача - ознакомиться и усвоить физическую сущность электрических и магнитных явлений. Это позволит понять принципы работы электромагнитных устройств, правильно их эксплуатировать. Анализ цепей синусоидального тока с помощью векторных диаграмм Совокупность векторов, изображающих синусоидальные ЭДС, напряжения и токи одной частоты и построенных на плоскости с соблюдением их ориентации друг относительно друга, называют векторной диаграммой. Векторные диаграммы широко применяются при анализе режимов работы цепей синусоидального тока, что делает расчет цепи наглядным.

 Однако, современному специалисту недостаточно знаний одних физических явлений. Поэтому студенты неэлектрических специальностей должны получить навыки в методах расчетов элементарных цепей и устройств, необходимых для успешного изучения последующих прикладных курсов.

 Дисциплина «Электротехника и электроника» рассчитана на 80 (88) часов. Из них 40 часов - лекций, 20 часов - практических занятий, 20 (28) часов - лабораторных занятий. Она включает два раздела «Электротехника» и «Электроника», завершается КП, зачетом (экзаменом). Курс построен так, что каждая из 7 тем закрепляется практическими и лабораторными занятиями. Эти виды занятий сопровождаются текущим контролем, который положен в основу формирования рейтинга студента. Поэтому залогом успешного освоения дисциплины является систематическая работа над материалом.

 Весь теоретический материал имеет строгое математическое обоснование. Он востребует знания студентов по математике ( разделы векторной алгебры, дифференциального, интегрального, комплексного исчисления, рядов), а также по физике (разделы электричества, магнетизма, молекулярной физики).

2. Общие понятия и определения линейных электрических цепей (ЛЭЦ).

 Электротехническое устройство и происходящие в нем физические процессы в теории электротехники заменяют расчетным эквивалентом - электрической цепью.

 Электрическая цепь - это совокупность соединенных друг с другом проводниками источников электрической энергии и нагрузок, по которым может протекать электрический ток. Электромагнитные процессы в электрической цепи можно описать с помощью понятий ток, напряжение, ЭДС, сопротивление, проводимость, индуктивность, емкость.

 Электрический ток может быть постоянным и переменным. Постоянным называют ток, неизменный во времени. Он представляет направленное упорядоченное движение носителей электрического заряда. Как известно из курса физики, носителями зарядов в металлах являются электроны, в полупроводниках электроны и дырки (ионы), в жидкостях - ионы.

 Упорядоченное движение носителей зарядов в проводниках вызывается электрическим полем. Поле создается источниками электрической энергии. Источник преобразует химическую, механическую, кинематическую, световую или другую энергию в электрическую. Он характеризуется ЭДС и внутренним сопротивлением. ЭДС источника м.б. постоянной или переменной во времени. Переменная ЭДС может изменяться во времени по любому физически реализуемому закону. Ток, протекающий по цепи под воздействием переменной ЭДС также переменный.

  Постоянный ток принято обозначать буквой I, переменный i(t); постоянную ЭДС - Е, переменную е(t), сопротивление - R, проводимость -g. В международной системе единиц (СИ) ток измеряют в амперах (А), ЭДС - в вольтах (В), сопротивление в омах (Ом), проводимость - в сименсах (См).

 При анализе электрических цепей, как правило оценивают значение токов, напряжений и мощностей. В этом случае нет необходимости учитывать конкретное устройство различных нагрузок. Важно знать лишь их сопротивление - R, индуктивность - L, или емкость - С. Такие элементы цепи называют приемниками электрической энергии.

 Для включения и отключения элементов электрических цепей применяют коммутационную аппаратуру ( рубильники, выключатели, тумблеры (см. рис. 1.1.). Кроме этих элементов в электрическую цепь могут включаться электрические приборы для измерения тока, напряжения, мощности.

  Изображение электрической цепи с помощью условных графических обозначений называют электрической схемой (рис. 1.2).

 Зависимость тока, протекающего по сопротивлению, от напряжения на этом сопротивлении принято называть вольтамперной характеристикой.

  Приемники электрической энергии, вольтамперные характеристики которых являются прямыми линиями (рис. 1.3), называются линейными, а электрические цепи только с линейными элементами - линейными электрическими цепями.

 Электрические цепи с нелинейными элементами называются нелинейными электрическими цепями. 

Источники электрической энергии. Одной из основных характеристик источников электрической энергии является ЭДС. Количественно ЭДС характеризуется работой А, которая совершается при перемещении заряда в 1 Кл в пределах источника

Приемники электрической энергии Приемники электрической энергии делятся на пассивные и активные. Пассивными называют приемники в которых не возникает ЭДС. Вольтамперные характеристики пассивных приемников проходят через начало координат. При отсутствия напряжения ток этих элементов равен нулю. Основной характеристикой пассивных элементов является сопротивление. Пассивные элементы, сопротивление которых не зависит от приложенного напряжения называются линейными. Реально таких элементов не существует. Но весьма близки к ним резисторы, реостаты, лампы накаливания и др. Зависимость напряжения от тока в таких элементах определяется законом Ома, т.е. U = IR, где R - сопротивление элемента. Эта зависимость не меняется, если напряжение и ток - переменное.

Метод наложения токов В методе наложения токов считается, что каждый из источников ЭДС создает в любой ветви цепи свой ток, независимо от того, если другие источники или их нет. При использовании данного метода из схемы поочередно исключаются все источники за исключением одного. Исключаемые источники заменяются проводником, если источник идеальный, или соответствующим ему внутренним сопротивлением, если источник реальный. Результирующий ток равен алгебраической сумме токов, создаваемых каждым источником
Синусоидальный ток расчет цепей