Промышленная электроника Расчет методом контурных токов Расчёт электрического поля Законы Кирхгофа и расчёт резистивных электрических цепей Расчет методом узловых напряжений Расчёт трёхфазных электрических цепей

Теория электрических цепей (основы электротехники)

Операционный усилитель

 Современные разработчики электронной аппаратуры стремятся использовать готовые функциональные узлы в виде интегральных микросхем (ИМС). Схемные решения ИМС тщательно проработаны и обеспечивают высокое качество аппаратуры. Предприятия, выпускающие микросхемы, заинтересованы в их сбыте. Поэтому они стремятся разработать универсальные микросхемы, которые можно применять в качестве различных функциональных узлов. Это повышает их спрос. Одной из таких ИМС является операционный усилитель (ОУ).

 ОУ имеет чрезвычайно высокий коэффициент усиления по напряжению (десятки и даже сотни тысяч), большое входное сопротивление (сотни кОм), малое выходное сопротивление ( десятки - сотни  Ом). Он усиливает широкий спектр чистот, вплоть до постоянной составляющей.


Схемное обозначение ОУ приведено на рис. 14.5а. На рис. 14.5б приведена упрощенная структурная схема. Она включает симметричный дифференциальный каскад (по схеме рис.14.3), несимметричный дифференциальный каскад (у него сигнал снимается с коллектора Т2) и эмиттерный повторитель, Первые два каскада обеспечивают высокий коэффициент усиления, а третий каскад - малое выходное сопротивление. Идеальный источник тока - это идеализированный активный элемент, ток которого не зависит от напряжения на его зажимах.

 Недостатки операционного усилителя:

Коэффициент усиления ОУ КU меняется от экземпляра к экземпляру в очень широких пределах. Например, для ОУ серии К153УД1 

Коэффициент усиления КU сильно зависит от температуры окружающей среды. Это обусловлено зависимостью от температуры коэффициента передачи тока базы транзисторов -b.

  Такая нестабильность КU сильно затрудняет применение ОУ непосредственно в качестве усилителя. Кроме того, большое значение КU ограничивает линейный участок передаточной характеристики ОУ очень малыми напряжениями по входу (см.рис.14.6а). Например, если Кб =20000, а максимальное напряжение на выходе ОУ -, то максимально допустимый диапазон изменений входного напряжения лежит в пределах . При увеличении входного напряжения за эти границы выходное не будет изменяться. Появляются нелинейные искажения сигнала.

  Значительно уменьшить недостатки ОУ позволяет применение ОС. Схема ОУ с ОС приведена на рис. 14.6б. Входной сигнал подается на прямой вход ИМС. С выхода ОУ напряжение ОС через делитель R1R2 поступает на инвертирующий вход ОУ

 . (14.14)

 Выходное напряжение ОУ представляется разностью Uвх -UОС. Такая ОС называется отрицательной ООС.

При высоких значениях КU разностью (Uвх- UOC) можно пренебречь, полагая . Тогда коэффициент усиления ОУ с ООС КUoc легко определить с учетом (14.14)

  (14.15)

 Видим, что КUoc определяется лишь отношением сопротивлений (R1 + R2)/R1 и не зависит от КU, т.е. все дестабилизирующие факторы ликвидированы. В практических схемах значения сопротивлений следует выбирать в пределах 103 ¸ 106 Ом. Например, при R1 = 2 × 103 Ом и R2 = 2× 105 Ом. КUос = 101. Теперь передаточная характеристика ОУ с ОС будет иметь достаточно большую область линейного участка. Для наших примеров диапазон входного сигнала расширяется до значения ±0,1В (пунктир на рис. 14.6а).

 

  Схема инвертирующего ОУ с ООС приведена на рис. 14.6В. В этой схеме входной сигнал и сигнал ООС поступают на инвертирующий вход ОУ. При этом происходит сложение токов Iвх и Ioc. Коэффициент усиления в этой схеме определяется отношением

.

  Знак минус указывает, что фазы входного и выходного сигналов противоположны.


Таким образом, введение ООС в схему ОУ позволяет повысить стабильность коэффициента усиления, расширить линейный участок передаточной характеристики и снизить искажения при передаче сигналов большой амплитуды.

Импульсные устройства Кроме напряжения синусоидальной формы в практике электротехники и электроники применяются напряжения других форм. Наиболее широко применяется импульсное напряжение. Импульсным называется прерывистое во времени напряжение (сигнал) любой формы. Под формой сигнала понимается закон изменения во времени напряжения или тока.

Компаратор – это устройство сравнения двух напряжений. Такие возможности приобретают ОУ в нелинейном режиме работы. Для анализа процесса сравнения обратимся еще раз к передаточной характеристике ОУ

Генераторы импульсных сигналов Формирующие цепи При генерации импульсных сигналов различной формы необходимо формирование временных интервалов, задающих длительность импульсов и пауз, частоту повторения импульсов и т.п. Эта задача решается с помощью формирующих цепей содержащих реактивные элементы. Наиболее простыми и надежными являются RC-цепи. Как правило, они применяются в качестве разделительных, дифференцирующих или интегрирующих цепей.

  Мультивибратором называется генератор периодически повторяющихся прямоугольных импульсов. Мультивибратор может быть выполнен на транзисторах, ОУ или на логических элементах. Рассмотрим схему мультивибратора на ОУ

  Генераторы линейно изменяющегося напряжения (ГЛИН) формируют напряжение пилообразной формы, которое необходимо для создания разверток на экранах осциллографов, телевизоров и др. индикаторов, для преобразователей аналоговых величин в цифровые, преобразователей  амплитуда-время и для др. целей.

Для определения токов и используем закон Ома для неоднородного участка цепи. . (Знак "+" ставится в том случае, если направление действующей ЭДС совпадает с направлением тока и "-" если направление тока противоположно направлению действующей ЭДС.) В данной формуле R - полное (с учетом внутреннего сопротивления источника ЭДС) сопротивление участка цепи.
Метод узловых и контурных уравнений