Задачи для самостоятельного решения по физике Общие свойства гармонических колебаний. Переменный ток Интерференция света Дифракция света Ответы на билеты к экзамену по физике

Задачник по физике примеры и решения

Кинематика материальной точки. Система отсчета. Траектория, перемещение, скорость, ускорение. Равномерное и равнопеременное прямолинейное движение.

Кинема́тика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Основная задача механики – определить положение тела в любой момент времени.

Механическое движение – это изменение положения тела в пространстве с течением времени относительно других тел.

Материальная точка – тело, размерами которого в условиях данной задачи можно пренебречь.

Система отсчета – тело отсчета, система координат, связанная с ним, и прибор для измерения времени.

Перемещение – направленный отрезок (вектор) между начальным и конечным положением тела.

Траектория (l) – линия, вдоль которой движется тело.

Путь (S) – длина траектории.

Скорость (V) – величина, показывающая какой путь проходит тело за единицу времени.

Скорость движения

Средняя путевая скорость

Мгновенная скорость/ скорость движения

За единицу скорости принимают скорость такого равномерного прямолинейного движения, при котором тело за одну секунду перемещается на один метр.

Ускорение – это величина, показывающая, как изменяется скорость за одну секунду.

Равномерное прямолинейное движение

Равномерным прямолинейным движением называется такое прямолинейное движение, при котором материальная точка (тело) движется по прямой и в любые равные промежутки времени совершает одинаковые перемещения.

Вектор скорости равномерного прямолинейного движения материальной точки направлен вдоль ее траектории в сторону движения. Вектор скорости при равномерном прямолинейном движении равен вектору перемещения за любой промежуток времени, поделенному на этот промежуток времени:

Примем линию, по которой движется материальная точка, за ось координат ОХ, причем за положительное направление оси выберем направление движения точки. Тогда, спроецировав векторы r и v, на эту ось, для проекций ∆rx = |∆r| и ∆vx = |∆v| этих векторов мы можем записать:

, отсюда получаем уравнение равномерного движения:

Т.к. при равномерном прямолинейном движении S = |∆r|, можем записать: Sx = Vx · t. Тогда для координаты тела в любой момент времени имеем:

где - координата тела в начальный момент t = 0.

Равнопеременное прямолинейное движение

Равнопеременным называется движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково, т.е. на равные величины. Это движение может быть равноускоренным и равнозамедленным.

Если направление ускорения а совпадает с направлением скорости V точки, движение называется равноускоренным. Если направление векторов а и V противоположны, движение называется равнозамедленным.

При равнопеременном прямолинейном движении ускорение остается постоянным и по модулю и по направлению (а = const). При этом среднее ускорение аср равно мгновенному ускорению а вдоль траектории точки. Нормальное ускорение при этом отсутствует (аn=0).

Изменение скорости ∆v = v - v0 в течении промежутка времени ∆t = t - t0 при равнопеременном прямолинейном движении равно: ∆v = a·∆t, или v - v0 = a·(t - t0). Если в момент начала отсчета времени (t0) скорость точки равна v0 (начальная скорость) и ускорение а известно, то скорость v в произвольный момент времени t: v = v0 + a·t. Проекция вектора скорости на ось ОХ связана с соответствующими проекциями векторов начальной скорости и ускорения уравнением: vх = v0х ± aх·t. Аналогично записываются уравнения для проекций вектора скорости на другие координатные оси.

Вектор перемещения ∆r точки за промежуток времени ∆t = t - t0 при равнопеременном прямолинейном движении с начальной скоростью v0 и ускорением а равен:

а его проекция на ось ОХ (или перемещение точки вдоль соответствующей оси координат) при t0 = 0 равна:

Путь Sx, пройденный точкой за промежуток времени ∆t = t - t0 в равнопеременном прямолинейном движении с начальной скоростью v0 и ускорением а, при t0 = 0 равен:

Так как координата тела равна х = х0 + S, то уравнение движения тела имеет вид:

Возможно так же при решении задач использовать формулу:

Вращение твердого тела вокруг неподвижной оси. Основной закон динамики вращательного движения абсолютно твердого тела. Момент инерции.

Криволинейное движение. Нормальное и тангенсальное ускорения. Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Динамика материальной точки. Инерциальные системы отсчета и первый закон Ньютона.

Импульс системы материальных точек. Уравнение движения центра масс. Закон сохранения импульса.

Уравнение движения тела переменной массы ( уравнение Мещерского)

Кинетическая энергия материальной точки и абсолютно твердого тела

Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.

Соударения тел. Упругое и неупругое взаимодействия. Абсолютно неупругим ударом, называется столкновение двух тел, в результате которого они соединяются вместе и движутся дальше как одно тело. Сталкивающиеся тела деформируются, возникают упругие силы и т.д. Однако если удар неупругий то, в конце концов все эти процессы прекращаются, и в дальнейшем оба тела, соединившись вместе, движутся как единое твёрдое тело.

Векторные диаграммы для представления гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Энергия колебательного движения.

Пружинный и физический маятники. Колебательная система в этом случае представляет собой совокупность некоторого тела и прикрепленной к нему пружины. Пружина может располагаться либо вертикально (вертикальный пружинный маятник), либо горизонтально (горизонтальный пружинный маятник).

Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях. Впервые изучены французским учёным Ж. Лиссажу

Вынужденные колебания. Резонанс. Колебания, происходящие под действием внешней периодической силы, называются вынужденными колебаниями. Внешняя периодическая сила, называемая вынуждающей, сообщает колебательной системе дополнительную энергию, которая идет на восполнение энергетических потерь, происходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или коси­нуса, то вынужденные колебания будут гармоническими и незатухающими.

Закон равномерного распределения энергии по степеням свободы молекул. Основное уравнение молекулярно-кинетической теории газов.

Среднее число столкновений и средняя длина свободного движения молекул. Молекулы газа, находясь в состоянии хао тического движения, непрерывно сталки ваются друг с другом. Между двумя по следовательными столкновениями молеку лы проходят некоторый путь l, который называется длиной свободного пробега. В общем случае длина пути между по следовательными столкновениями различ на, но так как мы имеем дело с огромным числом молекул и они находятся в бес порядочном движении, то можно говорить о средней длине свободного пробега молекул

Политропный процесс, его частные случаи: изобарный, изотермический, адиабатный, изохорный

Методы анализа переходных процессов Прямое и обратное преобразование Гильберта. Сопряженное колебание. Гильбертовский сигнал. Комплексное (негильбертовское) представление узкополосного сигнала. Комплексная огибающая узкополосного сигнала. Спектральная плотность гильбертовского сигнала и комплексной огибающей реального узкополосного колебания. Понятие низкочастотного эквивалента радиотехнической цепи. Спектральный метод расчета огибающей радиосигнала на выходе узкополосной цепи (теорема об огибающей).
Ответы на билеты к экзамену по физике