Задачи для самостоятельного решения по физике Общие свойства гармонических колебаний. Переменный ток Интерференция света Дифракция света Ответы на билеты к экзамену по физике

Задачник по физике примеры и решения

Задачи для самостоятельного решения.

Рассмотрим ситуацию, моделирующую процесс столкновение атома и молекулы. Первоначально система, описанная в задаче 2.3, неподвижна и пружинка не деформирована. Второму шарику сообщается импульс p0 = m2V0 в сторону первого (удар налетающего атома). Определите скорость Vc центра масс системы, и частоту w0 возникающих колебаний.

В условиях задачи 2.4 определите а) амплитуду A изменения деформации пружины, б) энергию поступательного Eпост и колебательного Eкол движения системы.

Потенциальная энергия частицы массы т в одномерном силовом поле зависит от ее координаты х по закону U(x) = U0(1 – cos ax), U0 и а – постоянные. Найдите частоту малых колебаний этой частицы около положения равно­весия.

Груз массой m = 0,2 кг, подвешенный на пружине жесткостью k = 20 Н/м, лежит на подставке так, что пружина не деформирована. Подставку убирают, и груз начинает двигаться. Найдите закон движения груза и его максимальную скорость. Законы сохранения импульса, энергии и момента импульса. Закон сохранения механической энергии. Полной механической энергией e системы тел называется сумма потенциальной и кинетической энергий тел, входящих в систему: e = T + U. (5.7)

С горизонтальной пружиной, жесткость которой k = 25 H/м связано тело массой М = 1 кг, лежащее на абсолютно гладком столе. В это тело попадает и застревает в нем пуля массой т = 10 г, летевшая со скоростью V = 200 м/с, направленной вдоль оси пружины. Определите период и амплитуду возникших колебаний. Выбрав момент попадания пули за начало отсчета времени, найдите зависимость координаты тела от времени.

Тело массой m падает с высоты h на чашу пружинных весов и прилипает к ней. Найдите частоту и амплитуду возникших колебаний. Определите зависимость координаты чаши от времени после соударения. Масса чаши и пружины пренебрежи­мо мала, жесткость пружины k .

К потолку на тонкой проволоке подвешен однородный диск массы т = 0,2 кг и радиуса R = 20 см (рис.). Модуль кручения проволоки) равен D = 0,1 Н×м/рад. Определите: а) частоту w0 малых крутильных колеба­ний диска, б) амплитуду А и начальную фазу j0 колебаний, если в начальный момент диск повернули на угол a = 0,2 рад и сообщили ему начальную угловую скорость W = 1 рад/c в направлении поворота.

Два диска закреплены соосно на одном тонком стержне, имеющем модуль кручения D = 1,5 Н×м/рад. Радиус дисков одинаков и равен R = 0,2 м. Массы дисков равны: m1 = 1 кг и m2 = 3 кг. Диски поворачивают в противоположные стороны и отпускают. а) Чему равна частота w0 малых крутильных колебаний дисков? б) Какой будет частота, если один из дисков (например, второй) закрепить.

Физический маятник представляет собой шар радиуса R =  м, висящий на тонком невесомом стержне длины l = R. В начальный момент времени маятнику сообщили угловую скорость W = 0,25 рад/c. Найдите частоту w0 малых колебаний маятника и зависимость от времени угла отклонения маятника от вертикали j(t).

Цилиндрический поплавок высоты h = 2 см плавает на поверхности воды. Определите период малых колебаний поплавка по вертикали, которые возникают, если его слегка погрузить в воду и отпустить. Плотность материала поплавка r  = 800 кг/м3, плотность воды r0 = 1000 кг/м3.

В стеклянную U-образную трубочку налита ртуть так, что весь столбик ртути имеет длину l = 20 см. После заполнения трубочку слегка наклонили, и возвратили в вертикальное положение, отчего ртуть начала колебаться. Определите период T0 этих колебаний, пренебрегая трением.

На середине натянутой струны длины l = 1 м укреплен ша­рик массой т = 50 г. Найдите частоту малых поперечных колебаний этого шарика. Силу натяжения струны считать постоянной и равной T = 20 Н. Массой струны и силами тяжести пренебречь.

Электроны в молекулах и кристаллах Молекула водорода. Физическая природа химической связи. Ионная и ко-валентная связи. Электронные, колебательные и вращательные состояния мно-гоатомных молекул. Молекулярные спектры. Строение кристаллического твердого тела. Энергетические зоны в кри-сталлах. Распределение электронов по энергетическим зонам. Уровень Ферми. Металлы, диэлектрики, полупроводники. Электропроводность полупроводни-ков. Понятие о дырочной проводимости. Собственные и примесные полупро-водники. Понятие о р-n переходе. Транзистор. Жидкие кристаллы. Тема 18. Элементы квантовой электроники Элементы квантовой теории излучения. Вероятность перехода. Вынуж-денное и спонтанное излучение. Принцип работы квантового генератора Свой-ства лазерного излучения. Приложения квантовой электроники. Тема 19. Атомное ядро Строение и свойства атомных ядер. Заряд, размерыи масса атомного ядра. Массовое и зарядовое числа. Состав ядра. Нуклоны. Свойства и природа ядерных сил. Дефект массы и энергия связи ядра. Происхождение и закономерности альфа-, бета-, гамма- излучений атомных ядер. Закон радиоактивного распада. Ядерные реакции и законы сохранения. Цепная реакция деления ядер. Управляемые и неуправляемые ядерные реакции. Понятие об ядерной энерге-тике. Реакция синтеза атомных ядер. Проблема управляемых ядерных реакций.

В условиях задачи определите а) амплитуду A изменения деформации пружины, б) энергию поступательного Eпост и колебательного Eкол движения системы.

Потенциальная энергия частицы массы т в одномерном силовом поле зависит от ее координаты х по закону U(x) = U0(1 – cos ax), U0 и а – постоянные. Найдите частоту малых колебаний этой частицы около положения равно­весия.

Груз массой m = 0,2 кг, подвешенный на пружине жесткостью k = 20 Н/м, лежит на подставке так, что пружина не деформирована. Подставку убирают, и груз начинает двигаться. Найдите закон движения груза и его максимальную скорость.

Доску положили на два быстро вращающихся навстречу друг другу (в противоположных направлениях) цилиндрических ролика. Расстояние между осями роликов l = 80 см, коэффициент трения скольжения между стержнем и роликами m = 0,16. Покажите, что стержень будет совершать гармонические колебания и найдите их частоту w0.

В кабине самолета подвешен маятник. Когда самолет летит без ускорения, маятник качается с частотой w0. Какова будет частота колебаний маятника, если самолет взлетает с ускорением а, направленным под углом a к горизонту? Отдельно рассмотрите случай, когда а = g и a = 0.

* Кольцо массы М = 0,3 кг может скользить без трения по горизонтальному стержню в установке, изображенной на рисунке. Кольцо соединено двумя одинаковыми  пружинками жесткостью k = 15 Н/м , с точками А и В установки. Установка вращается с постоянной угловой скоростью W = 6 рад×с вокруг вертикальной оси, проходя­щей через середину стержня. а) Найдите частоту малых колеба­ний кольца. б) При какой угловой скорости W колебания не возникнут?

Затухающие колебания.

 У реального осциллятора всегда есть потери колебательной энергии. Поэтому свободные колебания будут затухающими (не гармоническими). В частности, учет сил вязкого трения (Fc = r×) для механического осциллятора или сопротивления электрических контуров (U = RI = R) приводит к дифференциальному уравнению типа: , (4.1)

где b – новая константа называемая коэффициентом затухания, w0 – собственная частота осциллятора в отсутствии затухания. Вид решения этого уравнения как раз и зависит от соотношения констант w0 и b, а их значения определяются параметрами конкретной колебательной системы.

1) Для случая b < w0 (малое затухание) его решением является функция:

Амплитуда и начальная фаза колебаний как обычно определяются начальными условиями.

Задача В условиях предыдущей задачи определить параметры затухающих колебаний в системе: а) время релаксации амплитуды (tA); б) количество колебаний, за которое амплитуда уменьшится в e раз (Ne); в) логарифмический декремент затухания g ;

Таким образом оказалось, что добротность равна числу колебаний осциллятора, за которое амплитуда уменьшается в 23 раза.

Задача При какой величине коэффициента вязкости r в устройстве, рассмотренном в задачах 4.1-4.3, реализуется критический режим. Определить зависимость смещения от времени в критическом режиме, если в начальный момент времени телу в положении равновесия сообщают скорость V0 = 1 м/с.

Решение Критический режим колебаний реализуется при b = w0 = 10 с-1. Для рассматриваемой колебательной системы:

  200 кг/с.

 Общее решение для критического режима может быть записано в виде:

.

Начальные условия:

В представленных выше задачах (4.1 – 4.6) затухание колебаний обусловлено наличием вязкого трения. Колебания в системе с “сухим трением” рассмотрим на примере следующей задачи.

Задача

На горизонтальном столе лежит брусок массы m = 0,5 кг, прикрепленный горизонтальной пружиной к стене. Коэффициент трения скольжения бруска о поверхность стола равен m = 0,1. Брусок сместили по оси Х так, что пружина рас­тянулась на x0 = 6,3 см, и затем отпустили. Жесткость пружинки k = 100 Н/м, а ее масса пренебрежимо мала.

а) Найти число колебаний, которое совершит брусок до остановки.

б) Построить график зависимости от времени смещения бруска от начального положения х(t);

Движение бруска от положения с координатой х(1) вправо. ()

В уравнении движения изменится лишь знак слагаемого m×mg в правой части

 -kx – m×mg.

После аналогичных переобозначений приходим к решению для второго этапа движения ( обозначим его x(2)):

.

Отметим, что отсчет времени в этой записи решения следует начинать от начала данного этапа движения. A1 = x1 + x0 = - 4,8 см. Частота колебаний, конечно, прежняя.

К концу второго этапа движения координата тела окажется равной:

  4,3 см.

Музыкальный камертон имеет собственную частоту колебаний n = 1000 Гц. Через какое время громкость его звучания уменьшится в п = 106 раз, если логарифмический декремент затухания равен g = 0,0006?

Последовательный резонансный колебательный контур состоит из конденсатора емкости С, катушки индуктивности L, сопротивления, равного критическому для данного конту­ра и ключа. При разомкнутом ключе конденсатор зарядили до на­пряжения U0 после чего ключ замкнули. Найдите ток I в контуре как функцию времени t. Чему равна при этом максимальная сила тока в контуре Imax?

Найдите закон изменения заряда на конденсаторе для контура, показанного на рисунке. Параметры контура С, L и R считать известными. Определите, при каком значении активного сопротивления R затухающие колеба­ния переходят в релаксацию.

Весьма наглядными амплитудные и фазовые соотношения между колебаниями, делает векторная форма представления колебаний. В частности, она позволяет качественно и количественно описывать вынужденные колебания. Каждой гармонической функции можно сопоставить вектор на плоскости, длина которого равна амплитуде колебания, а полярный угол – его фазе. Для гармонических колебаний этот вектор вращается относительно начала координат (точки О) против часовой стрелки с угловой скоростью w, равной частоте колебаний. Проекция вектора на ось Х и дает значение гармонической функции.

Для определения амплитуды вынужденных колебаний А и фазового сдвига a достаточно провести сложение векторов

 

Свободные колебания железного стержня, подвешенного на пружине, происходят с частотой wс = 20 рад×с-1, причем амплитуда колебаний уменьшается в h = 5 раз в течение вре­мени tη = ln5 » 1,61 с. Вблизи нижнего конца стержня помещена катушка, питаемая переменным током (см. рисунок). Считая, что амплитуда вынуждающей силы неизменна, найти:

а) коэффициент затухания b,

б) число колебаний Ne, за которые амплитуда уменьшается в е раз и добротность Q, в) при какой частоте тока через катушку wрт колебания стержня достигнут наибольшей амплитуды?

Решение

На вопросы (а) – (б) легко ответить, исходя из сведений о затухающих колебаниях:

В условиях рассматриваемой задачи мм.

Приведем также точный вид амплитудной резонансной кривой для рассмотренного случая вынужденных колебаний. Горизонтальным пунктиром указан уровень амплитуды вынужденных колебаний в  раз меньший резонансного (что соответствует уменьшению колебательной энергии в 2 раза). Он определяет “ширину резонансной кривой” Dw. Нетрудно показать, что Dw = 2b и понятие добротности получает новую трактовку:

.  (5.10)

Для колебательной системы, описанной в предыдущей задаче, построить зависимости от частоты амплитуды вынужденных колебаний, амплитуд поглощения Ап и дисперсии Ад.

Доказать, что при вынужденных колебаниях экстремумы амплитуды дисперсии наблюдаются при частотах вынуждающего воздействия ω @ ωр ± β.

Частота свободных колебаний некоторой си­стемы wс = 50,0 рад×с-1, резонансная частота wр = 49,9 рад×с-1. Определить добротность Q этой системы.

Найти резонансную частоту wр для некоторого механического осциллятора, если амплитуды смещений при вынужденных колебаниях этого осциллятора одинаковы при частотах w1 = 20 рад×с-1 и w2 = 40 рад×с-1.

Определить частоту w*р, соответствующую резонансу скорости некоторого механического осциллятора (когда амплитуда скорости колеблющегося тела максимальна), если амплитуды скорости при частотах вынуждающей силы w1 = 10 рад×с-1 и w2 = 40 рад×с-1 одинаковы.

При некоторой скорости движения поезда его вагоны особенно сильно раскачиваются на рессорах в результате периодических толчков колес о стыки рельс. Когда поезд стоит на станции, рессоры деформированы под нагрузкой вагонов на Dх = 10 см. Длина рельс l = 12,5 м. Определить по этим данным скорость движения поезда.

На крутильный маятник, описанный в задаче 2.10, действует внешняя сила, момент которой меняется по закону N(t) = Nm×coswt. Определить работу сил трения, действующих в системе, за время, равное периоду колебаний. Установившиеся вынужденные колебания маятника происходят по закону: j = jm cos (wt - a).

Грузик массы m = 100 г подвешен на невесомой пружинке с жесткостью k = 32,4 Н/м. Под действием вынуждающей вертикальной гармонической силы грузик совершает установившиеся колебания с частотой w = 17 рад×с-1. При этом колебания шарика отстают по фазе от вынуждаю­щей силы на a = p/4. Определить добротность данного осциллятора.

Квазилинейный метод анализа нелинейного усилителя с частотно-избирательной нагрузкой в недонапряженном режиме работы усилителя. Квазилинейная схема замещения усилителя в перенапряженном режиме. Энергетические характеристики нелинейного усилителя. Нелинейное резонансное усиление амплитудно-модулированных колебаний и сигналов с угловой модуляцией. Минимизация нелинейных искажений в усилителе радиосигналов.
Ответы на билеты к экзамену по физике