Основные принципы проектирования Расчеты деталей машин на прочность, жесткость и устойчивость Выполнение компоновочных чертежей редуктора Резьбовые соединения Расчет передач на сопротивление усталости

Детали машин Основные принципы проектирования

Как можно было заметить по материалу предыдущей лекции, зубчатый венец червячного колеса изготавливается всегда из менее прочного материала по сравнению с витками червяка (чугун, бронза и латунь, как правило, менее прочны по сравнению со сталью). Поэтому в червячном зацеплении зуб червячного колеса является наиболее слабым элементом. Для него возможны все виды разрушений и повреждений, характерных для зубчатых передач: изнашивание и усталостное выкрашивание рабочих поверхностей зубьев, заедание и поломка зубьев.

Червячные передачи Передача вращением между перекрещивающимися валами посредством червяка и сопряженного с ним колеса.

Червяк – винт с трапециидальной или близкой по форме резьбой

Достоинства:

– Возможность получения больших передаточных отношений

– Большая плавность работы

– Малая шумность

– Компактность

Недостатки:

– Большое трение в передачах Þ большой нагрев из-за, большого скольжения, что требует применения дорогостоящей оловянной бронзы

– Очень низкий КПД (60-95%)

– Износ зубьев

– Мощность не выше 50 кВт

Геометрия червячной передачи

Червяк является ведущим, колеса ведомым. Червячная передача бывает следующих типов:

1. Цилиндрическая – делительная и начальная поверхности червяка и колеса круговые цилиндры.

2. Глобоидные – делительная поверхность является частью вогнутой поверхности тора (глобоида)

Нагрузочная способность червяка выше за счет увеличения числа зубьев колеса, находящего в зацеплении с витками червяка.

Виды цилиндрических червяков

Бывают линейчатые и нелинейчатые. Линейчатые образуются винтовым движением прямой линии, а нелинейчатые винтовым движением конической или тороидальной формы.

К линейчатым относится 3 типа:

1. Архимедов ZA

2. Эвольвентный ZJ

3. Конвалютный ZN

Нелинейные обозначаются как ZT

Геометрические параметры червяка и колеса

m – осевой модуль червяка

p = p×m – расчетный осевой шаг червяка

pX = p × z1 – ход витка (шаг винтовой линии)

g = arctg (pX / pd1) – делительный угол подъема линии витка

Делительный диаметр червяка:

d1 = m×z1 / tg g, причем z1 / tg g = q – коэффициент диаметра червяка.

d2 = mz2 – число зубьев колеса

a = (d1 + d2) / 2 – межосевое расстояние

Кинематика червячных передач

U = w1/w2 = n1/n2 = z2/z1

За 1 оборот червяк повернется на угол y, а колесо на угол y2 = y × pX / pd2.

V1 – окружная скорость червяка на диаметре dW1, V2 – окружная скорость колеса на диаметре dW2, gW – начальный угол подъема витка

Силы червячном в зацеплении

Окружная сила червяка (касательная к начальной окружности)

Ft1 = 2000T1/dW1

Осевая червяка (вдоль оси) FX1= Ft2

Радиальная червяка (к центру окружности) FR1=FR2=Ft2×tg £,

Окружная колеса Ft2 = 2000T2/dW2

Осевая колеса FX2=Ft1.

Достоинства червячных передач: 1) компактность и относительно небольшая масса конструкции; 2) возможность получения больших передаточных чисел в одной ступени – стандартные передачи u ? 80, специальные ? u ? 300; 3) высокая плавность и кинематическая точность; 4) низкий уровень шума и вибраций; 5) самоторможение при обратной передаче движения, то есть невозможность передачи движения в обратном направлении - от ведомого червячного колеса к ведущему червяку. Недостатки червячных передач обусловлены большими скоростями скольжения витков червяка по зубьям червячного колеса, а также значительными осевыми силами, действующими на валах передачи.
Критерии работоспособности и расчета