Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа косметики

Женская одежда

 

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Соединения Активная мощность трехфазной системы Понятия  об импульсных устройствах, электронный ключ Источники электромагнитного поля Мощность, выделяемая в цепи переменного тока

Расчеты электрических цепей

Величины, представляющие собой сумму проводимостей ветвей, сходящихся в данном узле, называются собственной проводимостью узла, величина, равная проводимости ветви между узлами, входящая со знаком минус в систему уравнений, называется общей проводимостью между узлами.

МОЩНОСТЬ ТРЕХФАЗНОЙ СИСТЕМЫ И ЕЕ ИЗМЕРЕНИЕ

Активная мощность трехфазной системы Р является суммой фазных активных мощностей, а для каждой из них справедливо основное выражение активной мощности цепей переменного тока. Следовательно, фазная активная Рф = ЗUфIфсоs >j и при симметричной нагрузке активная мощность трехфазного устройства

P = 3 PФ = 3 UФ IФ cos >j  (3.7)

Но в трехфазных установках большинстве случаев приходится выражать активную мощность устройства не через фазные, а линейные величины. Это легко сделать на основании соотношений фазных и линейных величин, заменив выражении активной мощности фазные величины линейными. При соединении звездой UФ = UЛ/>Ö3 ; IФ = IЛ, а при соединении треугольником UФ = UЛ; IФ = IЛ/ÖЗ .После подстановки этих выражений в формулу (3.7) получим одно и то же выражение для активной мощности трехфазной симметричной установки:

P = 3UФ IФ cos >j = Ö3 UЛ IЛ cos j 

Хотя это выражение относится только к активной мощности симметричной системы, тем не менее им можно руководствоваться в большинстве случаев, так как промышленных устройствах основная нагрузка редко бывает несимметричной.

Реактивная мощность в симметричной системе, так же как и полная мощность, выражается через линейные величины подобно активной мощности:

Q = 3QФ = 3UФ IФ sin >j = Ö3 UЛ IЛ sin j 

S = 3 UФ IФ = >Ö3 UЛ IЛ

Простейшие условия измерения активной мощности трехфазной системы имеются в том случае, если фазы приемников соединены звездой с доступной нейтральной точкой. В этом случае для одной цепь тока ваттметра соединяют последовательно из фаз приемника (рис. 3.12а), а напряжения включают под напряжение той приемника, которую включена ваттметра, т. е. зажимы цепи присоединяются один к линейному проводу, второй—к точке приемника. подобных условиях измеренная мощность

PИЗ = PФ = UФ IФ cos >j 

а мощность симметричного приемника

P =3 PИЗ =3 UФ IФ cos >j 

Часто нейтральная точка недоступна или фазы приемника соединены треугольником. Тогда применяется измерение с помощью искусственной нейтральной точки (рис. 12 б).

Рис. 3.12 Схема измерения активной мощности в симметричной трехфазной системе:

а — при доступной нейтральной точке,

б — с искусственной нейтральной точкой

Такая точка (точнее узел) составляется из цепи напряжения ваттметра с сопротивлением rвт.н и двух добавочных резисторов С такими же сопротивлениями. При таком соединении цепь находится под фазным напряжением, а через тока прибора проходит фазный ток. Следовательно, при измерении

P = 3 PИЗ 

Для измерения активной мощности в четырехпроводной установке (т. е. с нейтральным проводом) при несимметричной нагрузке применяют способ трех ваттметров (рис. 3.13). В такой каждый из измеряет активную мощность одной фазы, а активная установки определяется как сумма мощностей, измеренных тремя ваттметрами:

Рис. 3.13 Схема измерения активной мощности в трехфазной четырехпроводной системе (способ трех ваттметров)

В трехпроводных сетях при несимметричной нагрузке мощность измеряют способом двух ваттметров.

Если включить два ваттметра в трехпроводную систему постоянного тока (рис. 3.14), то они будут измерять мощность всей установки. При этом не имеет значения, каковы напряжения отдельных цепей, объединенных систем. вместо постоянных и рассматривать мгновенные значения напряжений токов трехфазной системы, таких условиях ваттметры показывать средние мгновенных мощностей, т. е. активные мощности. Но следует иметь виду, что хотя Р = P1 + Р2, системы равна сумме показаний двух ваттметров, но эта сумма алгебраическая, показание одного из ваттметров может быть отрицательным — стрелка отклоняться обратную сторону, за нуль шкалы. Чтобы отсчитать нужно переключить зажимы цепи напряжения. Показания прибора после такого переключения считать отрицательными.

Рис. 3.14 Схема измерения активной мощности в трехфазной трехпроводной системе (способ двух ваттметров)

Пример. Трехфазный симметричный потребитель электроэнергии с сопротивлением фаз Zа = Zь = Zc = Zф = R = 10 Ом соединен «звездой» и включен в трехфазную сеть симметричным линейным напряжением Uл = 220 В (рис.3.15). Определить токи фазных линейных проводах, а также потребляемую активную мощность режимах:

а) при симметричной нагрузке;

б) при отключении линейного провода;

в) при коротком замыкании той же фазы нагрузки.

Построить для всех трех режимов топографические диаграммы напряжений и показать на них вектора токов.

Рис. 3.15.

а) Решение. Фазные напряжения при симметричной нагрузке: Ua = Ub = Uc = Uф = Uл/>Ö3 = 220Ö3 = 127 В. Фазные токи при этой нагрузке: IФ = Uф/Rф = 127/10 = 12,7 А. Линейные токи при симметричной нагрузке: IА = IC = IЛ = Iф = 12,7 А, так как симметричный трехфазный потребитель электроэнергии соединен «звездой».

Активная мощность трехфазного симметричного потребителя:>
Р = 3Рф = 3Uф × Iф cos j = 3 × 127 × 12,7 ×1 = 4850 Вт = 4,85 кВт или Р = Ö3 Uл Iл cos jф= Ö3 × 220 × 12,7 × 1 = 4850 Вт= 4,85 кВт, где
cos jф = 1 при ZФ = RФ.

Векторная диаграмма напряжений и токов приведена на рис.3.16.

Рис. 3.16.

б)Решение Ток в линейных проводах аА и сС при обрыве линейного провода ЬВ (выключатель S разомкнут); так как сопротивление фазы Zb = >¥ (IВ = 0), а Za = R и Zc = R включены последовательно на линейное напряжение UCA = UЛ = 220 B; IA = IC = I = UCA/(R + R) = 220/(10 + 10) = 11 А.

Напряжение на фазах потребителя при обрыве линейного провода ЬВ (нейтральная точка п в этом случае соответствует середине вектора напряжения UCA): Ua = Uc = UCA/2 /2/2= 220/2 /2/2= 110 B.

Рис. 3.17.

Напряжение между проводом фазы В и нейтральной точкой п определяют из векторной диаграммы (рис. 3.17): Uc = Uл cos >p/6 = 220 × 0.866 = 190,5 B.

Активная мощность потребителя при обрыве линейного провода ЬВ: Р = РА + РС = 2 I2 RФ = 2 >× 112 × 10 = 2420 Вт = 2,42 кВт.

в) Для условия задачи определить фазные напряжения UФ и токи IФ, активную мощность Рк потребителя при коротком замыкании фазы Zb, построить векторную диаграмму для этого случая рис. 3.18.

Рис. 3.18

Решение. В данном случае Zb = 0 и Ub = 0, нейтральная точка п переместится в точку В, при этом фазные напряжения Uc = UBC, Uа = UАВ, т.е. равны линейным напряжениям (Uф = UЛ). При токи: IA = IC = Uл/R = 220/10 = 22 А. Ток IВ коротком замыкании соответствии с первым законом Кирхгофа для нейтральной точки п: + IB IC = 0 или -IB = IA IC.

Из прямоугольного треугольника на векторной диаграмме рис. 3.19 имеем: (-IB/2)2 + (IA/2)2 /2)2/2)2= I2 А, откуда IB = >Ö3 IA = Ö3 × 22 38 А. При этом IА = UЛ/Za = Iс = UЛ/Zc = Uл/R = 220/10 = 22 А.

Активная мощность цепи при коротком замыкании: Рк = РА + PC = 2 >× I2ф R = 2 × 222 × 10 = 9680 Вт = 9,68 кВт. Векторная диаграмма напряжений и токов приведена на рис. 3.19

Рис. 3.19

Пример 3.1.

Рассчитать все токи в цепи и напряжение на конденсаторе после замыкания ключа (рис. 10), если U0 = 30 В; r = 100 Ом; С = 100 мкФ.

Решение

Система  уравнений, составленных по законам Кирхгофа для цепи после коммутации, имеет вид:

Сводим систему к одному уравнению.
За неизвестную величину примем напряжение , так как напряжение на ёмкости подчиняется закону коммутации

Учитывая, что , получим дифференциальное уравнение с одним неизвестным:

.

Характеристическое уравнение имеет вид:

.  (2)

Его корень  с-1.

Решение дифференциального уравнения имеет вид:

.

Из приведенного примера видно, что составление дифференциальных уравнений – процесс трудоемкий, поэтому решение дифференциального уравнения можно записывать сразу, без составления самого уравнения, в виде суммы принужденной и свободной составляющих. Вид свободной составляющей определим по виду корней характеристического уравнения. Найдем корни характеристического уравнения, используя метод входного сопротивления (см. подразд. 2.3, практическое занятие № 2).

Запишем входное сопротивление цепи после коммутации. Для этого закоротим источник эдс и разомкнем ветвь, содержащую сопротивление r,

.

Приведем дробь к общему знаменателю:

.

Приравняем Z(р) к нулю (). Дробь равна нулю, когда числитель дроби будет равен нулю:

r(2rpC + 3) = 0 или 2rpC + 3 = 0.

Получим характеристическое уравнение, аналогичное уравнению (2). Его корень

 с-1.

Так, корень характеристического уравнения – один, он является действительным числом, следовательно, напряжение на конденсаторе будет изменяться по закону:

.  (3)

Принуждённое значение напряжения на ёмкости равно напряжению на резисторе 2r:

 В.

Постоянную интегрирования А найдем из уравнения (3), записанного для t = 0:

, так как согласно законам коммутации , то ; 30 = 20 + A; A = 10 B.

Напряжение на конденсаторе uC(t), В,

.

Ток i3(t), А, через конденсатор:

.

Ток , А, можно найти по закону Ома:

.

Ток в неразветвлённой части цепи i1(t), А, определим по первому закону Кирхгофа:

.

Соединение фаз треугольником При соединении треугольником (рис. 3.9) обмотки фаз генератора соединяются так, чтобы начало одной фазы соединялось с концом предыдущей (А Z; В X и С Y).

Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования переменных напряжений и токов неизменной частоту при передаче электроэнергии от источника к потребителю.

В режиме нагрузки первичная обмотка трансформатора включена на номинальное первичное напряжение, а ко вторичной обмотке подключен приемник. В этом случае можно выделить три потока: основной поток Ф , сцепленный с первичной и обмотками, рассеяния обмотки Фроc1 Фрoс2 .

Асинхронный электродвигатель является основным видом электродвигателей, выпускаемых электротехнической промышленностью. Своей простотой, надежностью, относительной дешевизной он завоевал преимущественное распространение по сравнению с другими видами электроприводов и находит применение во всех отраслях народного хозяйства.

Полупроводниками называют вещества, которые по способности проводить электрический ток занимают промежуточное положение между металлом и диэлектриками. Для изготовления полупроводниковых приборов используют вещества с кристаллической структурой. Исходным материалом наиболее часто служит германий Ge кремний Si, а также арсенид галлия GaAs Атомы в решетке связаны за счет обменных сил, возникающих при попарном объединении валентных электронов соседних атомов, этом каждый из атомов остается электрически нейтральным. Такая связь называется ковалентной.

Полупроводниковые диоды и стабилитроны Полупроводниковым диодом называется полупроводниковый прибор с р-п переходом и двумя выводами, в котором используется свойство односторонней проводимости перехода. Стабилитрон также состоит из одного перехода, нормально эксплуатируется при обратном напряжении.

В случае, когда требуется определить ток или напряжение в одной ветви сложной цепи применяется метод эквивалентного генератора. Суть метода заключается в замене действия всех источников цепи по отношению к рассматриваемой ветви действием только одного эквивалентного генератора (источника напряжения или источника тока).
Магнитные цепи при постоянных токах