Соединения Активная мощность трехфазной системы Понятия  об импульсных устройствах, электронный ключ Источники электромагнитного поля Мощность, выделяемая в цепи переменного тока

Расчеты электрических цепей

Переходные процессы в линейных цепях Классический метод расчета переходных процессов. Законы коммутации и начальные условия. Расчет переходного процесса в цепи с двумя накопителями энергии. Операторный метод расчета. Расчет переходного процесса при воздействии напряжения или тока, изменяющегося по любому закону (интеграл Дюамеля).

Резонанс напряжений

Если в цепи переменного тока, содержащей последовательно включенные конденсатор, катушку индуктивности и резистор (см. рис. 216),

 (150.1)

то угол сдвига фаз между током и напряжением (149.9) обращается в нуль (j=0), т. е. изменения тока и напряжения происходят синфазно. Условию (150.1) удовлетворяет частота

 (150.2)

В данном случае полное сопротивление цепи Z (149.12) становится минимальным, равным активному сопротивлению R цепи, и ток в цепи определяется этим сопротивле­нием, принимая максимальные (возможные при данном Um) значения. При этом падение напряжения на активном сопротивлении равно внешнему напряжению, прило­женному к цепи (UR =U), а падения напряжений на конденсаторе (UC) и катушке индуктивности (UL) одинаковы по амплитуде и противоположны по фазе. Это явление называется резонансом напряжений (последовательным резонансом), а частота (150.2) — резонансной частотой. Векторная диаграмма для резонанса напряжений при­ведена на рис. 218, а зависимость амплитуды силы тока от w уже была дана на рис. 211.

В случае резонанса напряжений

подставив в эту формулу значения резонансной частоты и амплитуды напряжений на катушке индуктивности и конденсаторе, получим

где Q — добротность контура, определяемая выражением (146.14). Так как доброт­ность обычных колебательных контуров больше единицы, то напряжение как на катушке индуктивности, так и на конденсаторе превышает напряжение, приложенное к цепи. Поэтому явление резонанса напряжений используется в технике для усиления колебания напряжения какой-либо определенной частоты. Например, в случае резонан­са на конденсаторе можно получить напряжение с амплитудой QUm (Q в данном случае—добротность контура, которая может быть значительно больше Um). Это усиление напряжения возможно только для узкого интервала частот вблизи резонанс­ной частоты контура, что позволяет выделить из многих сигналов одно колебание определенной частоты, т. е. на радиоприемнике настроиться на нужную длину волны. Явление резонанса напряжений необходимо учитывать при расчете изоляции элект­рических линий, содержащих конденсаторы и катушки индуктивности, так как иначе может наблюдаться их пробой.

Резонанс токов

Рассмотрим цепь переменного тока, содержащую параллельно включенные конден­сатор емкостью С и катушку индуктивностью L (рис. 219). Для простоты допустим, что активное сопротивление обеих ветвей настолько мало, что им можно пренебречь. Если приложенное напряжение изменяется по закону U= Um сos w t (см. (149.1)), то, согласно формуле (149.11), в ветви 1С2 течет ток

амплитуда которого определяется из выражения (149.10) при условии R=0 и L=0:

Начальная фаза j1 этого тока по формуле (149.9) определяется равенством

 (151.1)

Аналогично, сила тока в ветви 1L2

амплитуда которого определяется из (149.10) при условии R=0 и С=¥ (условие отсутствия емкости в цепи, см. § 149):

Начальная фаза j2 этого тока (см. (149.9))

 (151.2)

Из сравнения выражений (151.1) и (151.2) вытекает, что разность фаз токов в ветвях 1С2 н 1L2 равна j1—j2=p, т. е. токи в ветвях противоположны по фазе. Амплитуда силы тока во внешней (неразветвленной) цепи

Если w = wрез = , то Im1=Im2 и Im=0. Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор и катуш­ку индуктивности, при приближении частоты w приложенного напряжения к резонанс­ной частоте wрез называется резонансом токов (параллельным резонансом). В данном случае для резонансной частоты получили такое же значение, как и при резонансе напряжений (см. § 150).

Амплитуда силы тока Im оказалась равна нулю потому, что активным сопротивле­нием контура пренебрегли. Если учесть сопротивление R, то разность фаз j1—j2 будет равна p, поэтому при резонансе токов амплитуда силы тока Im будет отлична от нуля, но примет наименьшее возможное значение. Таким образом, при резонансе токов во внешней цепи токи I1 и I2 компенсируются и сила тока I в подводящих проводах достигает минимального значения, обусловленного только током через резистор. При резонансе токов силы токов I1 и I2 могут значительно превышать силу тока I.

Рассмотренный контур оказывает большое сопротивление переменному току с ча­стотой, близкой к резонансной. Поэтому это свойство резонанса токов используется в резонансных усилителях, позволяющих выделять одно определенное колебание из сигнала сложной формы. Кроме того, резонанс токов используется в индукционных печах, где нагревание металлов производится вихревыми токами (см. § 125). В них емкость конденсатора, включенного параллельно нагревательной катушке, подбирает­ся так, чтобы при частоте генератора получился резонанс токов, в результате чего сила тока через нагревательную катушку будет гораздо больше, чем сила тока в подводя­щих проводах.

Последовательность расчета переходных процессов операторным методом заключается в следующем.

1. Находят независимые начальные условия – ток на катушке индуктивности iL(0) и напряжение на конденсаторе uC(0) в момент коммутации.

2. Составляют операторную схему замещения. Помня при этом,

• что операторная схема сохраняет конфигурацию послекоммутацион-        ной электрической цепи;

• активные сопротивления переносятся в операторную схему без изме-        нения;

• индуктивность L заменяется элементом pL последовательно, с ним         включается добавочная эдс, которая направлена по току. Величина         добавочной эдс равна LiL(0);

• емкость С заменяется элементом , после которого последова-          тельно включается добавочная эдс, равная  и направленная         против направления тока;

• эдс и токи заменяются их изображениями.

Если задача имеет нулевые независимые начальные условия uС(0)=0, iL(0)=0, то добавочные эдс в операторную схему не включаются.

3. Используя любой известный метод расчета электрических цепей (метод непосредственного применения законов Кирхгофа, метод контурных токов и т. д.), определяют изображения токов I(p) для операторной схемы.

Законы Кирхгофа в операторной форме:

– алгебраическая сумма изображений токов в узле равна нулю:

,

– алгебраическая сумма изображений напряжений в замкнутом контуре равна нулю:

.

Проверкой правильности нахождения изображения токов служит выполнение следующих предельных соотношений:

,

,

,

.

4. Изображение напряжения на любом из элементов цепи находим по закону Ома в операторной форме:

,

,

.

По формулам предельного соотношения можно проверить и правильность нахождения изображений напряжения.

Нелинейные элементы. Свойства нелинейных цепей. Методы расчета нелинейных цепей постоянного тока: графические, аналитические, численные. Магнитные цепи. Аналогия уравнений магнитных и электрических нелинейных цепей. Особенности расчета режимов нелинейных цепей переменного тока. Высшие гармоники и комбинационные колебания. Методы расчета нелинейных цепей переменного тока: графические и аналитические.
Магнитные цепи при постоянных токах