Плоская система сходящихся сил Потенциальная и кинетическая энергия Напряжения в поперечных сечениях Пара сил и ее действие на тело Уравнение движения точки Понятие о трении

Для сечений, составленных из прокатных профилей (двутавры, швеллера, уголки) геометрические характеристики определяются в соответствии с ГОСТ (государственный общероссийский стандарт). В таблицах прокатных профилей приводятся все размеры, согласно которым изготовляются прокатные профили, а так же значение геометрических характеристик - осевых моментов инерции, моментов сопротивления, радиусов инерции, координаты центра тяжести сечения

Уравнение движения точки

В общем случае точка может двигаться по криволинейной траектории. Для изучения криволинейного движения точки необходимо уметь определить ее положение в назначенной системе отсчета (системе координат) в любой момент времени.

Уравнения, определяющие положение движущейся точки в зависимости от времени, называются уравнениями движения, Наиболее удобный способ задания движения точки — естественный способ. При этом задается траектория точки (графически или аналитически) и закон движения точки по траектории.

Пусть произвольная точка А перемещается по заданной траектории (рис. 116, а). Принимая точку 0 за начало отсчета, уравнение движения можно представить в виде

где 5 — расстояние точки А от начала отсчета; I — время.

Положение движущейся в плоскости точки (рис. 116, б) можно определить, если известны ее координаты х и у относительно системы двух взаимно перпендикулярных координатных осей Ох и Оу. При движении точки ее координаты изменяются с течением времени, следовательно, х и у являются некоторыми функциями времени и определяют движение точки:

Такой способ задания движения точки называется координатным. С помощью уравнений движения (121) можно найти траекторию точки. Для этого из них нужно исключить параметр — время I — и найти зависимость между координатами точки

 

Пример. При движении точки ее координаты изменяются с течением времени и определяются уравнениями:

Найти уравнения траектории движения точки.

Решение. Из уравнения (б) находим t = у/5 = 0,2 y. Подставляя значение t в уравнение (а), получим уравнение траектории

Уравнение (в) показывает, что траектория движения точки представляет собой прямую линию.

Вращательное движение твердого тела

Движение твердого тела, при котором все точки, лежащие на некоторой прямой, принадлежащей телу или неизменно с ним связанной, остаются неподвижными в рассматриваемой системе отсчета, называется вращательным движением. Упомянутая выше прямая называется осью вращения.

 

 Рис. 2.18. Вращение тела вокруг неподвижной оси

Очевидно, что все точки тела, не лежащие на оси вращения, будут двигаться по окружностям, плоскости которых перпендикулярны оси вращения, а центры лежат на этой оси.

Положение тела при вращательном движении можно однозначно определить углом  между неподвижной полуплоскостью I и подвижной, вращающейся вместе с телом, полуплоскостью II, проходящими через ось вращения. Положительным направлением отсчета угла называемого также угловой координатой, принято считать вращение против хода часовой стрелки, если смотреть навстречу оси вращения z . Сам угол  принято измерять в радианах.

Скорость точки Рассмотрим некоторые основные определения, важные для последующего изложения. Если точка за равные промежутки времени проходит равные отрезки пути, то ее движение называется равномерным.

Ускорение точки При движении по криволинейной траектории скорость точки может изменяться и по направлению, и по величине. Изменение скорости в единицу времени определяется ускорением.

Виды движения точки в зависимости от ускорения Рассмотрим возможные случаи движения точки и проанализируем выведенные выше формулы для касательного и нормального ускорений.

Изменение угловой скорости в единицу времени определяется угловым ускорением, равным производной угловой скорости по времени

Скорости и ускорения точек вращающегося тела Если тело вращается вокруг оси, то его точки перемещаются по окружностям, радиусы которых r равны расстояниям точек от оси вращения Пример. Твердое тело, вращающееся вокруг неподвижной оси, имеет в данный момент угловую скорость ω = 5 рад/с и угловое ускорение ε = - 20 рад/с2.

Кинематические пары и цепи Кинематической парой называется подвижное соединение двух соприкасающихся тел, например поршень и цилиндр, вал и подшипник и др. Тела, составляющие кинематическую пару, называются звеньями. Звено механизма может состоять из нескольких деталей (отдельно изготовляемых частей механизма), не имеющих между собой относительного движения. Высшие кинематические пары

Предел применимости формулы Эйлера. Эмпирические формулы для критических напряжений

Рамы представляют собой геометрически неизменяемую систему, состоящую из стержней, расположенных в плоскости (плоские рамы) или в пространстве, жестко или шарнирно соединенных между собой. Сложные рамные системы, в том числе статически неопределимые, изучаются в курсе строительной механики стержневых систем.
Теоретическая механика