Расчеты на прочность при изгибе Механические испытания материалов Кулачковые механизмы Краткие сведения о редукторах Соединение деталей Заклепочные соединения

Наука "Сопротивление материалов" занимается в основном изучением прочности, устойчивости и жесткости преимущественно отдельных элементов сооружений. Объектом изучения в "Строительной механике" будет целое сооружение. Задачи строительной механики состоят в разработке методов определения усилий в сооружениях и их перемещений, а также в исследовании устойчивости и жесткости сооружений.

Механические испытания материалов

Физико-механические свойства материалов изучают в лабораторных условиях путем нагружения образца до разрушения. Применяемые в настоящее время механические испытания материалов весьма многообразны. По характеру приложения внешних сил они разделяются на статические, динамические (или испытания ударной нагрузкой) и испытания на выносливость (нагрузкой, вызывающей напряжения, переменные во времени).

Испытания материалов можно классифицировать также по видам деформированного состояния. Различают испытания образцов на растяжение, сжатие, срез, кручение и изгиб. Наиболее широко применяют статические испытания материалов на растяжение. Объясняется это тем, что механические характеристики, получаемые при испытании на растяжение, позволяют сравнительно точно определить поведение материала при других видах загружения. Кроме того, этот вид испытаний наиболее легко осуществить.

По механическим свойствам материалы могут быть разделены на две основные группы: пластичные и хрупкие. У первых разрушению предшествует возникновение значительных остаточных деформаций; вторые разрушаются при весьма малых остаточных деформациях. Пластичными материалами в обычных условиях являются малоуглеродистая сталь, бронза, медь; хрупкими — некоторые специальные сорта стали, чугун.

Для наглядного представления о поведении материала при растяжении или сжатии строят кривую зависимости между величиной удлинения (укорочения) испытываемого образца и величиной вызвавших его сил, так называемую диаграмму растяжения или сжатия. Такая диаграмма может быть получена при испытании образца материала на специальных машинах,

снабженных приборами, автоматически записывающими ход растяжения или сжатия образцов. По оси абсцисс на диаграмме откладывают абсолютное удлинение или укорочение Δl испытываемого образца, по оси ординат — соответствующее значение растягивающих или сжимающих сил F.

От диаграммы растяжения в координатах F и Δl можно, разделив все ее ординаты на А, а абсциссы на l, перейти к диаграмме в координатах σ и ε, где

Первоначальная площадь поперечного сечения А и первоначальная длина расчетной части l образца являются постоянными, поэтому вид диаграммы растяжения в новых координатах (рис. 73, а) такой же, как и в координатах F и Δl, но масштабы ординат и абсцисс будут соответственно отличаться.

Диаграмма растяжения в координатах σ и ε (рис. 73, а) более удобна и лучше отражает физические свойства материала, так как она не зависит от геометрических размеров испытываемого образца: длины l и площади поперечного сечения А.

До значения напряжения, соответствующего точке В диаграммы, имеет место линейная зависимость (прямая пропорциональность) между величинами относительного удлинения ε и напряжения σ, т. е. соблюдается закон Гука. Напряжение, соответствующее точке В диаграммы, как уже говорилось, называется пределом пропорциональности материала и обозначается σпц. При переходе за точку В справедливость закона Гука нарушается: удлинение растет интенсивнее, чем сила; прямая ОВ переходит в кривую ВС, обращенную выпуклостью кверху. До точки С диаграммы увеличение растягивающей силы практически не вызывает остаточных деформаций образца. Материал деформируется упруго, и напряжение, соответствующее точке С, называется пределом упругости σу.

 Пример 2. Кольцо радиуса r = 0,5м вращается с постоянной угловой скоростью Я = 4 рад/с в плоскости чертежа. По кольцу движется точка М с постоянной скоростью V = 2м/с. Определить величину абсолютного ускорения точки М в указанном на чертеже положении.

Решение. В данной задаче движение точки М по кольцу - относительное, вращение вместе с кольцом - переносное. Для определения абсолютного ускорения воспользуемся формулой сложения ускорений:

 .

Для изучения относительного движения отвлечемся от переносного т.е. пусть кольцо не вращается, а точка М движется по кольцу с постоянной скорость V=2 м/с. Найденное в этом движении ускорение и будет относительным: . Данное ускорение будет направлено к центру кольца, так как точка в относительном движении движется равномерно. Для определения переносного ускорения отвлечемся от относительного движения точки: точка зафиксирована в положении, указанном на рисунке и лишь вращается вместе с кольцом с постоянной угловой скоростью по окружности радиусом ОМ=2R вокруг точки 0. Найденное в этом движении ускорение и будет переносным:   16м/с2. Его направление показано на рисунке и обусловлено равномерной скоростью вращения. Модуль ускорения Кориолиса вычисляем по формуле (2.55):  

= (учитываем, что вектор направлен вдоль оси вращения кольца и перпендикулярен вектору ). Направление вектора ,определяемого правилом векторного умножения (2.54), показано на рисунке. Складывая найденные ускорения, определяем 

Предел пропорциональности и предел упругости у для многих материалов, например для стали, оказываются настолько близки, что зачастую их считают совпадающими и отождествляют несмотря на физическое различие этих пределов.

За характеристику прочности хрупких материалов принимают наибольшее значение напряжения, соответствующее моменту разрыва. Это напряжение для хрупких материалов называют пределом прочности и обозначают σпч в отличие от временного сопротивления σв для пластичных материалов.

Классификация машин

Машиной называется устройство, создаваемое человеком, выполняющее механические движения для преобразования энергии, материалов и информации с целью полной замены или облегчения физического и умственного труда человека, увеличения его производительности. Под материалами понимаются обрабатываемые предметы, перемещаемые грузы и т. д.

Основные требования к машинам и деталям. Потребности производства, имеющего основной целью всемерное неуклонное повышение благосостояния трудящихся, определяют основные тенденции в развитии советского машиностроения: увеличение производительности и мощности машин, скоростей, давлений и других показателей интенсивности технологических процессов, повышение к. п. д. машин, уменьшение их массы и габаритов, широкую автоматизацию управления машинами, повышение их надежности и долговечности, снижение стоимости изготовления, повышение экономической эффективности эксплуатации, удобства и безопасности обслуживания.

Краткие сведенья о стандартизации и взаимозаменяймости деталей машин Стандартизацией называется установление обязательных норм, которым должны соответствовать типы, сорта (марки), параметры (в частности, размеры), качественные характеристики, методы испытаний, правила маркировки, упаковки, хранения продукции (сырья, полуфабрикатов, изделии).

Кривошипно-шатунный механизм служит для преобразования вращательного движения кривошипа в возвратно-поступательное прямолинейное движение ползуна, Наоборот, когда ведущим звеном является ползун, возвратно-поступательное прямолинейное движение ползуна преобразовывается во вращательное движение кривошипа и связанного с ним вала.

Лагерь, А.И. Инженерная графика /А.И. Лагерь, Э.А. Колесникова. - М.: Высшая школа, 1995 с.: ил. 2. Чекмарев, А.А. Инженерная графика: учебник для спец. Вузов /А.А. Чекмарев. - М.: Высшая школа, 1988. - 335 с.: ил. 3. Боголюбов, С.К. Инженерная графика - 3 изд., испр. и дополн. /С.К. Боголюбов. - М.: Машиностроение, 2000. - 352 с.: ил. 4. Федоренко, В.А., Справочник по машиностроительному черчению. - 16 изд., перепечатка с 14 изд. /В.А Федоренко, А.И. Шошин. - М.: - ООО ИД "Альянс", 2007. - 416с.
Краткие сведения о редукторах