Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа косметики

Женская одежда

 

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач курсового расчета

Дифференцируемость ФНП

Пусть   определена в .

ФНП   называется дифференцируемой в точке , если выполнены соотношения

,

где  – приращение вектора аргументов;  – полное приращение функции  в точке  соответственно ; .

ПРИМЕР 1. Показать по определению дифференцируемость функции  в произвольной точке . Интегрирование функций нескольких переменных. Двойной интеграл и его свойства. Метод интегральной суммы. Всякая физическая система имеет пространственные размеры и описывается набором величин, которые могут меняться при переходе от точки к точке системы. Например, тело имеет переменную плотность. Задача – вычислить общую массу тела. Решение такого типа задач и дает метод интегральной суммы.

Решение. Обозначим , , . Для произвольного  
приращение функции имеет вид 

.

Здесь вектор , функция , причем

, где ,  – соответственно углы между вектором  и осями координат .

ФНП , заданная на области , называется дифференцируемой на множестве , если она дифференцируемая в каждой точке этого множества.


Связь понятий "существование частных производных", "непрерывность" и "дифференцируемость" в точке для ФНП иная, чем для функции одной переменной, и может быть изображена в виде
следующей схемы

Рассмотрим соответствующие утверждения, предполагая , , где  – область; .

ТЕОРЕМА (о непрерывности дифференцируемой ФНП)

Если  – дифференцируемая в точке   ФНП, то она
непрерывна в точке .

Доказательство. По определению дифференцируемости ФНП в точке имеем , где .

При , т.е. при , имеем , т.е. , что подтверждает непрерывность ФНП  в точке .

Обратное утверждение неверно для ФНП, поскольку оно неверно для функции одной переменной.

Контрпример: , .

Теорема о существовании всех частных производных ФНП

Для функции  вычислить  и  и сравнить эти значения, если ; ; .

Теорема о достаточных условиях дифференцируемости ФНП в точке

Дифференциалы высших порядков ФНП Пусть в области , , задана произвольная ФНП , , имеющая непрерывные частные производные первого порядка.

Для  вычислить  и , где  и , ,  – произвольные постоянные числа.

Формула Тейлора для ФНП записывается в дифференциальной форме по аналогии с формулой Тейлора для функции одной переменной Формула Тейлора позволяет вычислять приближенно значение функции с любой наперед заданной точностью. Погрешность может быть установлена с помощью оценки остаточного члена.

Производные высших порядков. Формула Лейбница. Пусть функция   имеет производную y'(x) в каждой точке интервала (а,b). Функция y'(x) тоже может иметь производную в некоторых точках этого интервала. Производная функции y'(x) называется второй производной (или производной второго порядка) функции и обозначается .
Итегралы вычисление площади и обьема