Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа косметики

Женская одежда

 

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач контрольной работы

Дифференцирование сложной ФНП

Производная сложной ФНП по независимому переменному равна сумме произведений производной внешней функции по каждому из промежуточных переменных, умноженной на производную этого промежуточного переменного по соответствующему независимому аргументу.

Прежде чем вычислять производную сложной функции, рекомендуется сначала написать формулу в общем виде, а затем
подставить конкретные функции. Например, , где  – сложная функция,  имеет один независимый аргумент  и два промежуточных аргумента  и , поэтому производная сложной функции по ее независимому аргументу имеет вид  или ; обращаем внимание на
различие знаков   и .

Математика. Решение задач контрольных, курсовых заданий. Вычислить первую и вторую производные от функции Примеры

ПРИМЕР. Написать формулы для производных сложных функций:

а) , ; б) , , ;

в) , , , , .

Ответ. а) промежуточная переменная –  (одна!), независимые
переменные –   (три!), поэтому имеем для сложной функции  формулы вычисления частных производных: ; ; ; Задачи приводящие к понятию определенного интеграла Типовой расчет по высшей математике Интегрирование

б) для сложной функции  один независимый аргумент – ; три промежуточных аргумента – . Поэтому
полная производная сложной функции по  вычисляется по формуле ;

в) аналогично имеем

.

В рассмотренных примерах предполагается, что в окончательный результат подставлены значения промежуточных переменных через независимые аргументы.

ЗАДАНИЕ для САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Вычислить производные сложных функций:

1) , , , ;

2) , , ;

3) , , ;

4) , , .

Ответ. 1) ;

2)

3) ;

4) , ,  ищем

. Далее
следует подставить значения ;  и преобразовать выражение; производная сложной функции  есть функция от .

Определение обыкновенного дифференциального уравнения (ОДУ) и его решения. Обыкновенным дифференциальным уравнением называется уравнение, связывающее между собой значения независимой переменной x, неизвестной функции y = f(x) и её производных (или дифференциалов): ; (все три переменные x, y, F - действительны).
Итегралы вычисление площади и обьема