Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа косметики

Женская одежда

 

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач контрольной работы

Интегрирование функций нескольких переменных

ФНП   рассматривается на некотором множестве , , . Пусть  – ограниченное, связное и замкнутое множество точек из ; впредь для краткости такое множество  будем называть фигурой . Интеграл ФНП по фигуре  строится в зависимости от количества независимых переменных ФНП и структуры (вида) фигуры . Так, например, в школьном курсе математики содержится первоначальное понятие определенного интеграла  функции , , . Здесь функция имеет одну независимую переменную, фигура  – отрезок.

Для функции двух переменных , очевидно, интеграл можно строить на дуге  или на плоской области , , . Функция трех переменных может рассматриваться на дуге ,
на части криволинейной (может быть и прямолинейной) поверхности , на "теле" , здесь , ,  – подмножества  и т.д.

Перечисленные множества (фигуры) различаются размерностью. Под словами размерность фигуры понимаем количество координат (чисел), необходимых для задания точки на фигуре.
Отрезок , дуга  в  или в  имеют размерность  
(одноразмерные фигуры); плоская область ,  и часть
поверхности ,  – двухразмерные фигуры; "тело"  – трехразмерная фигура. Формула Остроградского Аналог формулы Грина для тройных интегралов.

Перечисленные множества (фигуры) различаются размерностью. Под словами размерность фигуры понимаем количество координат (чисел), необходимых для задания точки на фигуре.
Отрезок , дуга  в  или в  имеют размерность  
(одноразмерные фигуры); плоская область ,  и часть
поверхности ,  – двухразмерные фигуры; "тело"  – трехразмерная фигура.

С размерностью фигуры связано интуитивно понимаемое понятие мера фигуры (сокр. ). Теория меры множества включает понятия: "спрямляемость" дуги", "квадрируемость" области,
"кубируемость" тела, устанавливая, в частности, необходимые и
достаточные условия их существования.

Сведем в таблицу предлагаемые термины для лучшего запоминания.

,

Фигура ,

Размерность фигуры ,

Мера
фигуры ,

Отрезок

, одноразмерная

Длина

Дуга

, одно-
размерная

Длина

Плоская

область

двухразмерная

Площадь

Часть

поверхности

двухразмерная

Площадь

 Тело

трехразмерная

Объем

Понятие интеграла ФНП Для построения интеграла ФНП  по фигуре , , используется следующая процедура построения интегральной суммы и переход к пределу. В зависимости от числа независимых переменных функции, размерности и меры фигуры интеграл  имеет различное представление, интерпретацию и способ счета.

Теорема необходимое условие существования определенного интеграла

Пусть , ,  – множество точек из , т.е. . Построить схематично график функции  на множестве : Для функции  представить на плоскости  множество точек  ее существования; указать свойства этого множества.

Понятие предела функции многих переменных (сокр. ФНП) вводится в предельной точке области определения функции.

Иногда удобно использовать переход от переменных  и  к полярным координатам. В частности, условие  (одновременно и независимо друг от друга) преобразуется в условие  при всяком  (независимо от ; сразу для всех ).

Так, функция y(x) = ex + x обращает уравнение : y(4) – y + x = 0 в тождество на всей числовой оси (y(4)(x) = ex; ex –(ex +x) + x = 0), т.е. является частным решением этого уравнения. Любое уравнение порядка  имеет множество частных решений (частным решением приведённого уравнения является и функция y(x) = sin(x) + x). Процедуру решения дифференциального уравнения часто называют интегрированием уравнения, при этом интегрировать приходится в общем случае ровно n раз, и при каждом интегрировании в решение входит очередная произвольная постоянная.
Итегралы вычисление площади и обьема