Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач курсового расчета

Функция нескольких переменных

ПРИМЕР Для функции  представить на плоскости  множество точек  ее существования; указать свойства этого множества.

Решение. , т.е. . Геометрически это множество представляется точками, заполняющими вертикальный угол между прямыми  и , точка  должна быть выброшена.

Свойства множества :

1)   – не открытое множество, так как можно указать точку, например, , которая принадлежит множеству, но не является его внутренней точкой;

2)   – не связное множество, так как не всякие две его точки
можно соединить непрерывной кривой, состоящей из точек множества , например точки  и ;

3)   – неограниченное множество, так как , ;

Первообразная и неопределенный интеграл Понятие первообразной функции Предыдущие главы были посвящены одной из основных задач дифференциального исчисления — нахождению производной заданной функции. Множество вопросов математического анализа и приложений в разнообразных науках приводит к другой задаче: по данной функции f(x) найти такую функцию F(x), производная которой равна функции f(x).

4)   – незамкнутое множество, так как оно не содержит все свои предельные точки, например точка  – предельная точка для , но .

ПРИМЕР 5. Для функции  представить в пространстве переменных  множество точек ее существования; указать свойства этого множества.

Решение. .

Множество  состоит из всех точек шара (без границы – сферы)
с радиусом 1 и центром в начале координат.

Свойства :  – открытое, связное, ограниченное,
не замкнутое множество.

ЗАДАНИЕ для САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Найти и построить множество точек определения функции:

а) ;  б) .

Указать свойства этих множеств.

2. Построить схематично график функции  на
множестве .

3. Построить график функции  на области ее определения.

Ответы. 1. а) точки полосы  выше и на прямой ; множество не открытое, связное, не ограниченное, не замкнутое;

  б) все точки шара с центром в  с радиусом ; множество не открытое, связное, ограниченное, замкнутое.

Свойства множеств следует не только перечислить, но и обосновать.

2.   – параболоид вращения, вершина на оси  в точке , расположен ниже плоскости ; ось симметрии – ось . Над кругом  "вырезается" криволинейная часть параболоида.

3.  – нижняя часть () конической
поверхности с осью симметрии – прямой  и вершиной .

Производные высших порядков. Формула Лейбница. Пусть функция   имеет производную y'(x) в каждой точке интервала (а,b). Функция y'(x) тоже может иметь производную в некоторых точках этого интервала. Производная функции y'(x) называется второй производной (или производной второго порядка) функции и обозначается .
Итегралы вычисление площади и обьема