Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа косметики

Женская одежда

 

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач контрольной работы

Геометрические свойства интеграла ФНП

Возможное геометрическое представление интегральной суммы  функции  на , а затем и интеграла  определяют геометрические свойства интеграла и перечень некоторых возможных задач, решаемых с помощью интеграла.

1. Площадь плоской фигуры

а) Пусть на плоскости  задана криволинейная трапеция
(см. ранее в п. 2.2). Тогда ее площадь можно вычислить с помощью определенного интеграла , здесь  на .

Если фигура есть комбинация криволинейных трапеций, то ее площадь находится через соответствующие операции над площадями составляющих криволинейных трапеций. В частности, при нахождении площади фигуры , заданной неравенствами  (см. рисунок), можно применить формулу

.

Дифференциал функции

Для понимания формулы достаточно провести параллельный перенос оси  на  с тем, чтобы кривые  и  были расположены выше оси.
И тогда площадь заданной фигуры находится через площадь криволинейной трапеции, т.е.

.

Иногда область  удобнее проектировать на ось  и задать неравенствами  (см. рисунок). В этом случае площадь фигуры  считается по формуле .

б) Площадь плоской фигуры  можно вычислить с помощью двойного интеграла:  (при  на  ), т.е. .

2. Длина дуги считается с помощью криволинейного интеграла

.

Если дуга задана параметрически  , то , поэтому  переходит в  для дифференцируемых на  функций , ,  и поэтому в указанном случае

.

Заметим, что если дуга плоская, например  то  ( – параметр) и длина дуги считается по
формуле

.

Площадь части криволинейной поверхности  считается с помощью поверхностного интеграла

Некоторые механические приложения интеграла ФНП Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)

Вычисление интеграла  рассмотрим подробно в зависимости от  и .

Для подынтегральной функции  определенный интеграл с переменным верхним пределом определяет
первообразную на .

Так, функция y(x) = ex + x обращает уравнение : y(4) – y + x = 0 в тождество на всей числовой оси (y(4)(x) = ex; ex –(ex +x) + x = 0), т.е. является частным решением этого уравнения. Любое уравнение порядка  имеет множество частных решений (частным решением приведённого уравнения является и функция y(x) = sin(x) + x). Процедуру решения дифференциального уравнения часто называют интегрированием уравнения, при этом интегрировать приходится в общем случае ровно n раз, и при каждом интегрировании в решение входит очередная произвольная постоянная.
Итегралы вычисление площади и обьема