Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач контрольной работы

Вычисление интеграла ФНП.

Для подынтегральной функции  определенный интеграл с переменным верхним пределом определяет
первообразную на .

В частности, теорема задает достаточное условие существования неопределенного интеграла . Элементы теории вероятностей События, происходящие в окружающем нас мире, можно разделить на три вида: достоверные, невозможные и случайные. Достоверным относительно комплекса условий S называется событие, которое обязательно произойдет при осуществлении этого комплекса условий. Например, если гладкий желоб с лежащим внутри него тяжелым шариком наклонить, то шарик обязательно покатится по желобу в сторону уклона. Невозможным называется событие, которое заведомо не произойдет при осуществлении комлекса условий S. Например, из герметически изолированного сосуда вода не может вылиться. Случайным относительно комплекса условий S называется событие, которое при осуществлении указанного комплекса условий может либо произойти, либо не произойти. Например, если вы уронили фарфоровую чашку на пол, то она может как разбиться, так и остаться неповрежденной.

Теорема (формула Ньютона – Лейбница)

Если функция  непрерывна на , то справедлива
формула

,

где  – любая первообразная для .

Доказательство. Из свойств неопределенного интеграла известно, что две произвольные первообразные для одной и той же функции различаются на постоянную, т.е. первообразные  и  
функции   связаны соотношением , поэтому

,

,  – постоянная.

Тогда при  имеем , т.е. ;
при   имеем  или  – приращение первообразной  на  – обычно обозначают

,

здесь  – какая-либо первообразная подынтегральной функции.

Линейные уравнения с постоянными коэффициентами. Выше неоднократно отмечалось, что в случае, когда коэффициенты линейного уравнения постоянны (pi(x) = ai = const, i = 1, 2, …, n), удаётся найти фундаментальную систему решений однородного уравнения. Рассмотрим этот случай.

Линейные однородные уравнения с постоянными коэффициентами. Пусть коэффициенты уравнения

  (34)

постоянны на рассматриваемом интервале (a, b) (ai = const при i = 1, 2, …, n). Для нахождения фундаментальной системы решений (ФСР) уравнения (34) предположим, что решения этого уравнения имеют вид y = ekx. Тогда . Подставляя эти выражения для производных в (34) и сокращая его на ekx, получим алгебраическое уравнение n-ой степени

  kn + a1kn -1 + a2 kn-2 + a3 kn-3 + …. + an = 0 . (35)

 Уравнение (35) называется характеристическим уравнением уравнения (34). Это уравнение имеет n (возможно, комплексных корней) k1, k2, …, kn, некоторые из которых могут быть равны друг другу. Каждому из этих корней соответствует функция из ФСР. Правило, по которому формируется ФСР, заключается в следующем:

 Если kj - простой действительный корень характеристического уравнения (т.е. корень кратности r = 1), то ему соответствует функция  в ФСР;

 если kj - действительный корень характеристического уравнения кратности r > 1 (т.е. kj = kj+1 = kj+2 = …= kj+r-1), то этому множеству корней соответствует набор функций  в ФСР;

 если  - простой комплексный корень характеристического уравнения (здесь  - мнимая единица), то корнем характеристического уравнения будет и сопряженное с kj число .  Паре корней kj, kj+1 соответствуют функции ,  в ФСР;

 если  - комплексный корень характеристического уравнения кратности r > 1, то корнем характеристического уравнения той же кратности будет и число . Паре корней kj, kj+1, каждый из которых имеет кратность r > 1, соответствуют набор функций , , , , , , …., ,  в ФСР.

 Обоснование этого правила дадим для случая n = 2. Рассмотрим уравнение второго порядка

.  (36) 

 Геометрический смысл уравнения первого порядка. Уравнение (6) в каждой точке (x, y) области D, в которой задана функция f(x, y), определяет   - угловой коэффициент касательной к решению, проходящему через точку (x, y), т.е. направление, в котором проходит решение через эту точку. Говорят, что уравнение (6) задаёт в D поле направлений. График любого решения дифференциального уравнения (называемый также интегральной кривой) в любой своей точке касается этого поля, т.е. проходит в направлении, определяемом полем.
Итегралы вычисление площади и обьема