Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа косметики

Женская одежда

 

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач контрольной работы

Вычисление интеграла ФНП.

Типовые задачи

1) Вычисление  проводится по формуле Ньютона – Лейбница, если известна какая-либо первообразная подынтегральной функции. Обобщения теорем сложения и умножения Появление только одного из независимых событий Рассмотрим примеры совместного применения теорем сложения и умножения. Пусть два независимых события А1 и А2 имеют вероятности появления соответственно p1 и р2. Найдем вероятность появления только одного из этих событий. Для этого введем новые события: В1 и B2. Событие В1 состоит в том, что событие А1 наступило, а событие А2 не наступило; иными словами, В1 = A1 2. Аналогичным образом определяется и событие B2 = 1A2 (совместное ненаступление события A1 и наступление события А2).

Если для вычисления первообразной применяется "интегрирование по частям", то эту операцию можно проводить сразу и для
определенного интеграла:

.

ПРИМЕР 1. Вычислить интеграл .

Решение.

.

Замена переменной интегрирования в определенном интеграле проводится соответственно следующей теореме.

Теорема (о замене переменной в определенном интеграле)

Пусть функция  определена и непрерывна на ;
функция ,  удовлетворяет условиям:

1)   ; причем , ;

2)   ;

3)   на , т.е. функция  обратима на  – существует обратная функция , :  на ;  на .

Тогда

,

где  – какая-либо первообразная для подынтегральной функции .

Заметим, что если  на  при выполнении остальных условий и , , то пределы интегрирования по  следует поменять местами.

Доказательство. Рассмотрим интеграл  –
интеграл с переменным верхним пределом – сложная функция от

,

т.е. действительно функция  – первообразная для , поэтому

.

Вычислить интеграл .

Вычисление площади плоской фигуры Площадь фигуры в декартовых координатах Вычислить площадь фигуры, ограниченной линиями  и . Площадь плоской фигуры в полярных координатах

Вычисление объема тела Вычислить объем цилиндрического тела, расположенного между плоскостями   и  и ограниченного поверхностью  и плоскостью .

Механические приложения Пластина имеет форму прямоугольника со сторонами длиной   и . Найти массу этой пластины, если ее плотность распределения массы в произвольной точке равна квадрату расстояния от точки до одной из вершин пластины.

 Геометрический смысл уравнения первого порядка. Уравнение (6) в каждой точке (x, y) области D, в которой задана функция f(x, y), определяет   - угловой коэффициент касательной к решению, проходящему через точку (x, y), т.е. направление, в котором проходит решение через эту точку. Говорят, что уравнение (6) задаёт в D поле направлений. График любого решения дифференциального уравнения (называемый также интегральной кривой) в любой своей точке касается этого поля, т.е. проходит в направлении, определяемом полем.
Итегралы вычисление площади и обьема