Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа косметики

Женская одежда

 

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач контрольной работы

Вычисление интеграла ФНП.

Типовые задачи

Вычисление площади плоской фигуры

а) Площадь фигуры в декартовых координатах

ПРИМЕР 5. Вычислить площадь фигуры, ограниченной линиями  и . Схема независимых испытаний Формула Бернулли Определение. Если при проведении нескольких испытаний вероятность события А в каждом испытании не зависит от исходов других событий, то эти испытания называются независимыми относительно события А. Будем рассматривать только такие независимые испытания, в которых событие А имеет одинаковую вероятность. Пусть производится п независимых испытаний, в каждом из которых событие А может появиться с вероятностью р. Тогда вероятность противоположного события — ненаступления события А — также постоянна в каждом испытании и равна q = 1 - p. В теории вероятностей представляет особый интерес случай, когда в п испытаниях событие А осуществится k раз и не осуществится п - k раз.

Решение. В п. 2.5 приведена формула для вычисления площади подобной фигуры. Проектируем фигуру (см. рисунок) на ось  и вычисляем

.

Итак, площадь фигуры .

ПРИМЕР 6. Вычислить площадь фигуры, ограниченной эллипсом .

Решение. Используем симметрию фигуры и вычислим площадь  части фигуры (в I квадранте):   Получаем

.

Итак, площадь эллипса .

Теория линейных уравнений.

Общие понятия.

 Опр. Линейным дифференциальным уравнением n-го порядка называется уравнение, в которое неизвестная функция y(x) и её производные входят линейно, т.е. в первой степени:

. (19)

  Если старший коэффициент q0 (x) отличен от нуля на интервале (a, b), т.е.  для , то, умножая (19) на , приводим уравнение к виду со старшим коэффициентом, равным 1:

  (20)

; дальше мы будем рассматривать уравнение (20).

 Если правая часть уравнения тождественно равна нулю на рассматриваемом интервале (f(x)=0 при ), то уравнение называется однородным. Таким образом, однородное уравнение - это уравнение вида

 . (21)

Задача Коши для уравнений (20) и (21) ставится также, как и для общего уравнения n-го порядка (17) : требуется найти решение уравнения (20) или (21), удовлетворяющее начальным условиям

  (22)

где y0, y1, y2, …, yn-1 - заданные числа. Для уравнения (17) теорема существования и единственности решения задачи Коши требовала непрерывности функции   и её производных ; если привести (20) к виду (17): ,

то . Таким образом, условия теоремы Коши приводят к необходимости непрерывности функций f(x) и pi(x), i = 1, 2, …, n. Далее, вывод теоремы Коши для уравнения (17) заключался в том, что найдётся окрестность точки x0, в которой существует однозначно определённое решение задачи Коши; для линейных уравнений (20) и (21) вывод более глобален: единственное решение существует на всём интервале (a, b), на котором выполняются условия теоремы:

 Геометрический смысл уравнения первого порядка. Уравнение (6) в каждой точке (x, y) области D, в которой задана функция f(x, y), определяет   - угловой коэффициент касательной к решению, проходящему через точку (x, y), т.е. направление, в котором проходит решение через эту точку. Говорят, что уравнение (6) задаёт в D поле направлений. График любого решения дифференциального уравнения (называемый также интегральной кривой) в любой своей точке касается этого поля, т.е. проходит в направлении, определяемом полем.
Итегралы вычисление площади и обьема