Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа косметики

Женская одежда

 

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач типового расчета

Вычисление интеграла ФНП.

Типовые задачи

Вычисление площади криволинейной поверхности

ПРИМЕР. Вычислить площадь частей сферы , лежащих внутри цилиндра .

Решение. Цилиндр  "вырезает" из сферы две части:  – соответственно для  и  – для ; они
равновелики.

Воспользуемся формулой , где  – проекция поверхности  на плоскость ; ;  для , т.е. . Проведем счет в полярных координатах. Понятие дифференциала функции. Свойства дифференциала.
В силу симметрии поверхности  ее площадь , где

.

Площадь частей сферы внутри цилиндра

.

7.7.5. Вычисление тройных интегралов проводим для специального вида областей интегрирования – правильных в направлении одной из осей координат.

Так, например, область ,  называется правильной в направлении оси , если всякая параллельная оси  прямая
пересекает границу области  не более чем в двух точках. В этом случае область  ограничена снизу и сверху поверхностями  и  соответственно, а "с боков" – возможно цилиндрической поверхностью с образующей параллельной оси  и
направляющей – границей области  – проекцией тела  на плоскость  (см. рисунок). Вычисление тройного интеграла в рассматриваемом случае проводится по формуле

,

при этом сначала вычисляется внутренний интеграл по переменной ( и  предполагаются неизменяющимися) как определенный
интеграл, а затем вычисляется двойной интеграл от полученной функции от  и  по области .

Аналогично формулируются правила вычисления тройного интеграла по области, правильной в направлении оси  и соответственно правильной в направлении оси .

Если область , , не является правильной в направлении какой-либо оси, то ее разбивают на части, каждая из которых правильная в направлении какой-либо оси, и проводят счет.

Вычислить интеграл , где  – призма, ограниченная координатными плоскостями , ,  и плоскостью .

Вычислить интеграл , где   – шаровое кольцо .

Вычислить объем тела, ограниченного эллипсоидом .

Вычисление криволинейных интегралов I рода Вычислить интеграл , если  , , .

Пример: решить задачу Коши  Как и в предыдущем примере, это уравнение не попадает ни под один из рассмотренных типов: оно не является ни уравнением с разделяющимися переменными (наличие суммы x2 + y), ни уравнением с однородной правой частью (слагаемые разных порядков - первого и второго в этой сумме), ни линейным, ни Бернулли (другая структура
Итегралы вычисление площади и обьема