Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа косметики

Женская одежда

 

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач типового расчета

Типовые задачи

Вычисление криволинейных интегралов I рода

Длина дуги

а)  Длина дуги в декартовых координатах

ПРИМЕР 3. Вычислить длину одного витка винтовой линии , , .

Решение. Винтовая линия – траектория точки, "поднимающейся" по круговому цилиндру со скоростью . Длину одного витка  найдем, если вычислим

. Преобразования плоских областей. Замена переменных в двойных интегралах связана с переходом от прямоугольной к криволинейной системам координат.

б) Длина плоской дуги в полярных координатах

Пусть ,  – дуга на плоскости  ().
Выведем формулу для вычисления ее длины.

Поскольку  параметр , то

. Поэтому

.

ПРИМЕР 4. Вычислить длину кардиоиды

.

Решение. Используя симметрию кривой, получим

.

Теорема о вронскиане линейно зависимой системы функций. Если система функций y1(x), y2(x), …, yn(x) линейно зависима на интервале (a, b), то вронскиан этой системы тождественно равен нулю на этом интервале.

Док-во. Если функции y1(x), y2(x), …, yn(x) линейно зависимы на интервале (a, b), то найдутся числа , из которых хотя бы одно отлично от нуля, такие что

   для . (27)

Продифференцируем по x равенство (27) n - 1 раз и составим систему уравнений

Будем рассматривать эту систему как однородную линейную систему алгебраических уравнений относительно . Определитель этой системы - определитель Вронского (26). В каждой точке  эта система имеет нетривиальное решение , следовательно, в каждой точке   её определитель равен нулю. Итак, W(x) = 0 при , т.е.  на (a, b).

Механические приложения Вычислить массу дуги   

Вычислить момент инерции относительно плоскости  дуги  , если плотность распределения массы в каждой точке дуги пропорциональна произведению

Вычислить повторный интеграл , восстановив область . Вычислить повторный интеграл .

Пример: решить задачу Коши  Как и в предыдущем примере, это уравнение не попадает ни под один из рассмотренных типов: оно не является ни уравнением с разделяющимися переменными (наличие суммы x2 + y), ни уравнением с однородной правой частью (слагаемые разных порядков - первого и второго в этой сумме), ни линейным, ни Бернулли (другая структура
kontakt 5
Итегралы вычисление площади и обьема