Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа косметики

Женская одежда

 

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Пишем качественные диссертации, дипломные, курсовые работы, проекты, расчеты и другие студенческие работы под заказ!
Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач типового расчета

Типовые задачи

Вычислить повторный интеграл , восстановив область .

Решение. Интеграл вычисляется по :  (см. рисунок).

.

Аналогично: 

если область  – правильная в направлении оси , то ее удобно проектировать на ось . Пусть проекция области  на ось  есть отрезок , уравнение левой границы области , а правой границы – . Тогда для всякого  значение  точек  прямой , принадлежащих области , удовлетворяет неравенствам . Поэтому область  можно
задать в виде

 (см. рисунок).

Такому заданию области соответствует повторный интеграл . Для его вычисления находится сначала внутренний интеграл, а затем внешний.
Результат – число!

 Теорема о наложении решений. Если y1,чн(x) - частное решение неоднородного уравнения Ln(y) = f1(x), y2,чн(x) - частное решение неоднородного уравнения Ln(y) = f2(x), то функция  является частным решением неоднородного уравнения .

 Док-во основано на линейности оператора Ln(y): , что и требовалось доказать.

Метод Лагранжа (метод вариации произвольных постоянных) решения неоднородного уравнения. Теперь мы знаем, как устроены общие решения и неоднородного линейного уравнения (сумма его частного решения и общего решения соответствующего однородного уравнения), и однородного линейного уравнения (линейная комбинация функций из фундаментальной системы решений). Остался вопрос: как найти фундаментальную систему решений и частное решение? Оказывается, в общем случае фундаментальную систему решений можно найти только для уравнений с постоянными коэффициентами (и уравнений, которые сводятся к уравнениям с постоянными коэффициентами). Такими уравнениями мы займёмся ниже, а в этом разделе рассмотрим метод вариации произвольных постоянных решения неоднородного уравнения. Принципиально то, что этот метод работает, если известна фундаментальная система решений линейного уравнения. Основную идею этого метода изложим для самого простого случая неоднородного уравнения второго порядка

. (29) 

Пусть y1(x), y2(x) - фундаментальная система решений соответствующего однородного уравнения

,  (30) 

 yоо(x) = C1 y1(x) + C2 y2(x) - общее решение однородного уравнения (30). Идея метода Лагранжа состоит в следующем. Ищем общее решение неоднородного уравнения (29) в том же виде y(x)=C1(x)y1(x) + C2 (x)y2(x), предполагая, что постоянные C1, C2 - не постоянные, а функции, зависящие от x: C1 = C1 (x), C2 = C2(x). Мы должны найти эти функции. Находим производную : . Дальше надо вычислять вторую производную. Воспользуемся тем обстоятельством, что вместо одной функции y(x) мы ищем две функции C1 (x) и C2(x), и, как следствие, можем наложить произвольную связь на эти функции. Для того, чтобы в выражении для второй производной  не участвовали вторые производные функций C1 (x) и C2(x), в качестве этой связи положим

 . (31)

Тогда .

Подставляем выражения для y(x) и её производных в уравнение (29):

Преобразуем:

Выражения в квадратных скобках раны нулю, так как функции y1(x), y2(x) - решения однородного уравнения (30), поэтому окончательно

  (32)

Уравнения (31),(32) дают замкнутую систему для функций  и :

  (33)

определитель этой системы совпадает с вронскианом функций y1(x), y2(x) и поэтому отличен от нуля, следовательно, система имеет единственное решение , . Находя это решения и интегрируя выражения производных для  и , получим C1 (x) и C2(x), а значит, и общее решение неоднородного уравнения (29) y(x) = C1 y1(x) + C2 y2(x).

Пример: решить задачу Коши  Как и в предыдущем примере, это уравнение не попадает ни под один из рассмотренных типов: оно не является ни уравнением с разделяющимися переменными (наличие суммы x2 + y), ни уравнением с однородной правой частью (слагаемые разных порядков - первого и второго в этой сумме), ни линейным, ни Бернулли (другая структура
Итегралы вычисление площади и обьема