Дифференцируемость ФНП Дифференциалы высших порядков Дифференцирование сложной ФНП Вычисление интеграла Типовые задачи Вычисление объема тела Вычисление криволинейных интегралов

Математика примеры решения задач курсового расчета

Предел, непрерывность ФНП

Многие теоремы о пределах, рассмотренные подробно для функции одной переменной (сокр. ФОП), могут быть перефразированы и доказаны для ФНП. Это прежде всего теорема об единственности предела (конечного), теорема о локальной ограниченности функции, имеющей конечный предел при , теорема "об арифметике" функций, имеющих конечные пределы при  и т.д. Приемы вычисления предела ФОП также могут быть использованы для ФНП.

ПРИМЕР 6. Вычислить .

Решение. Преобразуем выражение

, получаем . Криволинейный интеграл второго рода Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки. Физическая задача вычисления работы силы при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода. Для этого кривая MN разбивается на п произвольных частей точками М=M1,M2,M3,…Mn=N

ПРИМЕР 7. Вычислить .

Решение. Воспользуемся первым замечательным пределом , а также вычислим

.

Окончательно получим по теореме "о произведении пределов"

.

ФНП  – непрерывна в точке , если она определена в некоторой окрестности точки  и  или , где , .

Следует различать непрерывность ФНП по совокупности переменных и непрерывность по отдельной координате.

Свойства решений линейного однородного дифференциального уравнения (25).

Теорема о линейности пространства частных решений линейного однородного дифференциального уравнения. Множество частных решений линейного однородного дифференциального уравнения образует линейное пространство.

Док-во. Требуется доказать, что множество частных решений линейного однородного дифференциального уравнения (25) (или, что тоже самое, (21)), т.е. не менее n раз дифференцируемых функций y(x) для которых Ln(y) = 0, является линейным пространством. Для этого достаточно доказать, что если функции y, y1(x), y2(x) - частные решения (25), то функции Cy, y1(x) + y2(x) - тоже частные решения (25). Действительно, пользуясь свойствами пункта 14.5.2. Линейный дифференциальный оператор и его свойства, получим

если Ln(y) = 0, то Ln(Cy) = CLn(y) = 0;

если Ln(y1) = 0 и Ln(y2) = 0, то Ln(y1 + y2) = Ln(y1) + Ln(y2) = 0.

 Следствие. Если y1(x), y2(x), …, yn(x) - частные решения уравнения (25), то их линейная комбинация C1 y1(x) + C2 y2(x) + …+ Cn yn(x) - тоже частное решение этого уравнения.

 Теперь мы займемся определением размерности этого пространства и нахождением его базиса. Предварительно сформулируем и докажем несколько свойств определителя Вронского системы решений уравнения (25).

Производные высших порядков. Формула Лейбница. Пусть функция   имеет производную y'(x) в каждой точке интервала (а,b). Функция y'(x) тоже может иметь производную в некоторых точках этого интервала. Производная функции y'(x) называется второй производной (или производной второго порядка) функции и обозначается .
Итегралы вычисление площади и обьема