Вычислительная математика Учебно-практическая задача Пути достижения параллелизма Моделирование и анализ параллельных вычислений Каскадная схема суммирования

Процессы и ресурсы Учебно-практическая задача

Учебно-практическая задача: Решение дифференциальных уравнений в частных производных

Дифференциальные уравнения в частных производных представляют собой широко применяемый математический аппарат при разработке моделей в самых разных областях науки и техники. К сожалению, явное решение этих уравнений в аналитическом виде оказывается возможным только в частных простых случаях, и, как результат, возможность анализа математических моделей, построенных на основе дифференциальных уравнений, обеспечивается при помощи приближенных численных методов решения. Объем выполняемых при этом вычислений обычно является значительным и использование высокопроизводительных вычислительных систем является традиционным для данной области вычислительной математики. Проблематика численного решения дифференциальных уравнений в частных производных является областью интенсивных исследований (см., например, [5,11,19]).

Рассмотрим в качестве учебного примера проблему численного решения задачи Дирихле для уравнения Пуассона, определяемую как задачу нахождения функции , удовлетворяющей в области определения  уравнению

и принимающей значения  на границе  области  ( и  являются функциями, задаваемыми при постановке задачи). Подобная модель может быть использована для описания установившегося течения жидкости, стационарных тепловых полей, процессов теплопередачи с внутренними источниками тепла и деформации упругих пластин и др. Данный пример часто используется в качестве учебно-практической задачи при изложении возможных способов организации эффективных параллельных вычислений [4, 10, 27].

Для простоты изложения материала в качестве области задания  функции  далее будет использоваться единичный квадрат

.

Пиковая производительность компьютера вычисляется однозначно, и эта характеристика является базовой, по которой производят сравнение высокопроизводительных вычислительных систем. Чем больше пиковая производительность, тем теоретически быстрее пользователь сможет решить свою задачу. Пиковая производительность есть величина теоретическая и, вообще говоря, не достижимая при запуске конкретного приложения.

Информатика, черчение, математика