Вычислительная математика Учебно-практическая задача Пути достижения параллелизма Моделирование и анализ параллельных вычислений Каскадная схема суммирования

Процессы и ресурсы Учебно-практическая задача

Учебно-практическая задача: Решение дифференциальных уравнений в частных производных

Организация параллельных вычислений для систем с общей памятью

Наличие общих данных обеспечивает возможность взаимодействия потоков. В этом плане, разделяемые переменные могут рассматриваться как общие ресурсы потоков и, как результат, их использование должно выполняться с соблюдением правил взаимоисключения (изменение каким-либо потоком значений общих переменных должно приводить к блокировке доступа к модифицируемым данным для всех остальных потоков). В данном примере таким разделяемым ресурсом является величина dmax, доступ потоков к которой регулируется специальной служебной переменной (семафором) dmax_lock и функциями omp_set_lock (разрешение или блокировка доступа) и omp_unset_lock (снятие запрета на доступ). Подобная организация программы гарантирует единственность доступа потоков для изменения разделяемых данных; как отмечалось ранее, участки программного кода (блоки между обращениями к функциям omp_set_lock и omp_unset_lock), для которых обеспечивается взаимоисключение, обычно именуются критическими секциями.

Результаты вычислительных экспериментов приведены в табл. 6.1 (здесь и далее для параллельных программ, разработанных с использованием технологии OpenMP, использовался четырехпроцессорный сервер кластера Нижегородского университета с процессорами Pentium III, 700 Mhz, 512 RAM).

Таблица 6.1. Результаты вычислительных экспериментов для параллельных вариантов алгоритма Гаусса-Зейделя (p=4)

 (k – количество итераций, t– время в сек., S – ускорение)

Оценим полученный результат. Разработанный параллельный алгоритм является корректным, т.е. обеспечивающим решение поставленной задачи. Использованный при разработке подход обеспечивает достижение практически максимально возможного параллелизма – для выполнения программы может быть задействовано вплоть до  процессоров. Тем не менее результат не может быть признан удовлетворительным – программа будет работать медленно и ускорение вычислений от использования нескольких процессоров окажется не столь существенным.

Пиковая производительность компьютера вычисляется однозначно, и эта характеристика является базовой, по которой производят сравнение высокопроизводительных вычислительных систем. Чем больше пиковая производительность, тем теоретически быстрее пользователь сможет решить свою задачу. Пиковая производительность есть величина теоретическая и, вообще говоря, не достижимая при запуске конкретного приложения.

Информатика, черчение, математика