Вычислительная математика Учебно-практическая задача Пути достижения параллелизма Моделирование и анализ параллельных вычислений Каскадная схема суммирования

Процессы и ресурсы Учебно-практическая задача

Учебно-практическая задача: Решение дифференциальных уравнений в частных производных

Возможность неоднозначности вычислений в параллельных программах

Последний рассмотренный вариант организации параллельных вычислений для метода сеток обеспечивает практически максимально возможное ускорение выполняемых расчетов – так, в экспериментах данное ускорение достигало величины 5.9 при использовании четырехпроцессорного вычислительного сервера. Вместе с этим необходимо отметить, что разработанная вычислительная схема расчетов имеет важную принципиальную особенность – порождаемая при вычислениях последовательность обработки данных может различаться при разных запусках программы даже при одних и тех же исходных параметрах решаемой задачи. Данный эффект может проявляться в силу изменения каких-либо условий выполнения программы (вычислительной нагрузки, алгоритмов синхронизации потоков и т.п.), что может повлиять на временные соотношения между потоками (см. рис. 6.5). Взаиморасположение потоков по области расчетов может быть различным: одни потоки могут опережать другие и, обратно, часть потоков могут отставать (при этом, характер взаиморасположения может меняться в ходе вычислений). Подобное поведение параллельных участков программы обычно именуется состязанием потоков (race condition) и отражает важный принцип параллельного программирования – временная динамика выполнения параллельных потоков не должна учитываться при разработке параллельных алгоритмов и программ.

Рис. 6.5. Возможные различные варианты взаиморасположения параллельных потоков (состязание потоков)

В рассматриваемом примере при вычислении нового значения   в зависимости от условий выполнения могут использоваться разные (от предыдущей или текущей итераций) оценки соседних значений по вертикали. Тем самым, количество итераций метода до выполнения условия остановки и, самое главное, конечное решение задачи может различаться при повторных запусках программы. Получаемые оценки величин  будут соответствовать точному решению задачи в пределах задаваемой точности, но, тем не менее, могут быть различными. Использование вычислений такого типа для сеточных алгоритмов получило наименование метода хаотической релаксации (chaotic relaxation).

Пиковая производительность компьютера вычисляется однозначно, и эта характеристика является базовой, по которой производят сравнение высокопроизводительных вычислительных систем. Чем больше пиковая производительность, тем теоретически быстрее пользователь сможет решить свою задачу. Пиковая производительность есть величина теоретическая и, вообще говоря, не достижимая при запуске конкретного приложения.

Информатика, черчение, математика