Вычислительная математика Учебно-практическая задача Пути достижения параллелизма Моделирование и анализ параллельных вычислений Каскадная схема суммирования

Процессы и ресурсы Учебно-практическая задача

Учебно-практическая задача: Решение дифференциальных уравнений в частных производных

Оценка трудоемкости операций передачи данных

Время выполнения коммуникационных операций значительно превышает длительность вычислительных команд. Оценка трудоемкости операций приема-передачи может быть осуществлена с использованием двух основных характеристик сети передачи: латентности (latency), определяющей время подготовки данных к передаче по сети, и пропускной способности сети (bandwidth), задающей объем передаваемых по сети за 1 сек. данных – более полное изложение вопроса содержится в разделе 3 пособия.

Пропускная способность наиболее распространенной на данный момент сети Fast Ethernet – 100 Mбит/с, для более современной сети Gigabit Ethernet – 1000 Мбит/с. В то же время, скорость передачи данных в системах с общей памятью обычно составляет сотни и тысячи миллионов байт в секунду. Тем самым, использование систем с распределенной памятью приводит к снижению скорости передачи данных не менее чем в 100 раз.

Еще хуже дело обстоит с латентностью. Для сети Fast Ethernet эта характеристика имеет значений порядка 150 мкс, для сети Gigabit Ethernet – около 100 мкс. Для современных компьютеров с тактовой частотой свыше 2 ГГц/с различие в производительности достигает не менее, чем 10000-100000 раз. При указанных характеристиках вычислительной системы для достижения 90% эффективности в рассматриваемом примере решения задачи Дирихле (т.е. чтобы в ходе расчетов обработка данных занимала не менее 90% времени от общей длительности вычислений и только 10% времени тратилось бы на операции передачи данных) размер блоков вычислительной сетки должен быть не менее N=7500 узлов по вертикали и горизонтали (объем вычислений в блоке составляет 5N2 операций с плавающей запятой). Скалярное произведение векторов и его свойства Скалярным произведением двух векторов и называется число, равное произведению длин этих векторов на косинус угла между ними Линейная и векторная алгебра Аналитическая геометрия Математический анализ

Как результат, можно заключить, что эффективность параллельных вычислений при использовании распределенной памяти определяется в основном интенсивностью и видом выполняемых коммуникационных операций при взаимодействии процессоров. Необходимый при этом анализ параллельных методов и программ может быть выполнен значительно быстрее за счет выделения типовых операций передачи данных – см. раздел 3 пособия. Так, например, в рассматриваемой учебной задаче решения задачи Дирихле практически все пересылки значений сводятся к стандартным коммуникационным действиям, имеющим адекватную поддержку в стандарте MPI (см. рис. 6.14):

- рассылка количества узлов сетки всем процессорам – типовая операция передачи данных от одного процессора всем процессорам сети (функция MPI_Bcast);

- рассылка полос или блоков узлов сетки всем процессорам – типовая операция передачи разных данных от одного процессора всем процессорам сети (функция MPI_Scatter);

- обмен граничных строк или столбцов сетки между соседними процессорами – типовая операция передачи данных между соседними процессорами сети (функция MPI_Sendrecv);

Рис. 6.14. Операции передачи данных при выполнении метода сеток в системе с распределенной памятью

- сборка и рассылка погрешности вычислений всем процессорам – типовая операция передачи данных от всех процессоров всем процессорам сети (функция MPI_Allreduce);

- сборка на одном процессоре решения задачи (всех полос или блоков сетки) – типовая операция передачи данных от всех процессоров сети одному процессору (функция MPI_Gather).

Другой способ измерения производительности заключается в определении числа вещественных операций, выполняемых компьютером в единицу времени. Единицей измерения является Flops (Floating point operations per second) - число операций с плавающей точкой, производимых компьютером за одну секунду. Такой способ является более приемлемым для пользователя, поскольку последний знает вычислительную сложность своей программы и, пользуясь этой характеристикой, может получить нижнюю оценку времени ее выполнения.

Информатика, черчение, математика